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Abstract

Tight t-designs are t-designs whose sizes achieve the Fisher type lower bound. We give a new necessary
condition for the existence of nontrivial tight designs and then use it to show that there do not exist
nontrivial tight 8-designs.
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1 Introduction

Let t, v, k and λ be positive integers, and [v] := {1, 2, . . . , v}. A t-(v, k, λ) design, or simply a t-design, is a

set B ⊆
(
[v]
k

)
satisfying for all T ∈

(
[v]
t

)
,

#{b ∈ B : T ⊆ b} = λ.

A design is trivial if it consists of all k-element subsets of [v]. It is easy to show that when v ≤ k + t, a
t-(v, k, λ) design is trivial. So, nontrivial t-(v, k, λ) designs have the property that v >k + t.

In 1975, D. Ray-Chaudhuri and R. Wilson [12] proved a Fisher type lower bound on the size of a nontrivial
design: For a nontrivial t-design B,

| B | ≥

{(
v
e

)
, if t = 2e,

2
(
v−1
e−1
)
, if t = 2e− 1,

where e := dt/2e. A nontrivial t-design is tight provided that the size of the design achieves the lower
bound above. Since λ

(
v
t

)
=
(
k
t

)
| B | for a t-(v, k, λ) design B, if B is tight, then λ is determined by t, v and

k. Given a nontrivial tight t-design, it is of strength t, namely, it is a t-design but not a (t + 1)-design.
The complementary design of a nontrivial t-(v, k, λ) design B consists of blocks {[v] \ b : b ∈ B}. It is a
t-(v, v − k, λ′) design for some positive integer λ′. The complementary design of a nontrivial tight t-design
is also a nontrivial tight t-design.

It is easy to show that there exists a unique tight 1-(v, k, λ) design up to isomorphism for each k, the
1-(2k, k, 1) design. Tight 2-designs are also called symmetric designs. The case t = 2 is quite different from
the other cases. Finite projective planes and Hadamard matrices give two infinite families of nontrivial tight
2-designs [7]. A complete classification of tight 2-designs is not yet known.

In 1975, D. Ray-Chaudhuri and R. Wilson [12] proved the nonexistence of nontrivial tight t-designs when
t ≥ 3 is odd. In 1977, E. Bannai [1] succeeded in proving that for any t = 2e with e ≥ 5, there exist only
finitely many nontrivial tight t-designs. In an 1977 unpublished paper [2], E. Bannai and T. Ito proved the
finiteness of the number of nontrivial tight 8-designs. In 1977, the nonexistence of nontrivial tight 6-designs
was proved by C. Peterson in [11]. In 1979, A. Bremner showed in [3] that there are only two nontrivial
tight 4-designs up to isomorphism, which have parameters 4-(23, 7, 1) and 4-(23, 16, 52). A second proof of
this fact was given by R. Stroeker [14]. Note that these two nontrivial tight 4-designs are complementary to
each other. In 2013, P. Dukes and J. Short-Gershman proved the nonexistence of nontrivial tight t-designs
for t ∈ {10, 12, . . . , 18} in [5].
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In this article, we first give a new necessary condition for the existence of nontrivial tight designs and
then use it to prove the nonexistence of nontrivial tight 8-designs. To state our new necessary condition,
let us recall the following notation. For nonnegative integer n, the n-th rising factorial and the n-th falling
factorial of x are

xn :=

n−1∏
i=0

(x+ i) and xn :=

n−1∏
i=0

(x− i),

respectively. We adopt the convention that x0 = x0 = 1.

Theorem 1.1. Let e be a positive integer. For each 0 ≤ i ≤ e, let

hi :=
(k − e)i+1

(v − 2e+ 1)i
∈ Q(v, k). (1.1)

There exists a nonzero integer ce such that if there exists a nontrivial tight 2e-(v0, k0, λ) design, then for
every 0 ≤ i ≤ e, the rational function cehi takes an integer value at the point (v0, k0). Moreover, ce can be
chosen so that it has only prime factors no greater than 2e− 2.

An explicit ce is given in Lemma 4.1 as ce,0, but it is far from being optimal. In practice, a smaller value
ce can be computed explicitly for small e. Proposition 4.3 shows that we can choose c4 = 288 in Theorem
1.1, which leads us to the nonexistence of nontrivial tight 8-designs.

Theorem 1.2. There do not exist nontrivial tight 8-designs.

The proofs of Theoremss 1.1 and 1.2 can be found in Sections 4 and 6, respectively.

2 Intersection numbers

Given a design B, the integers in the set{
|b ∩ b′| : {b, b′} ∈

(
B
2

)}
are called the intersection numbers of the design. The following proposition shows that we can determine all
intersection numbers of a nontrivial tight 2e-(v0, k0, λ) design just using v0, k0 and e.

Proposition 2.1 ([4, implicit], [12, p. 743], [11, implicit], [1, Proposition 1], [5, Proposition 1.1]). For
a nontrivial tight 2e-(v0, k0, λ) design, the zeros of the polynomial Φe,v0,k0 ∈ Q[x] of degree e are distinct
integers and the zeros coincide with the intersection numbers of the design, where

Φe,v0,k0(x) :=

e∑
i=0

(−1)e−i
(
v0−e
i

)(
k0−i
e−i
)(
k0−i−1
e−i

)(
e
i

) (
x

i

)
.

For each 0 ≤ i ≤ e, let

pi :=

(
e

i

)
(k − e)i(k − e+ 1)i

(v − 2e+ 1)i
∈ Q(v, k). (2.1)

Corollary 2.2. For a tight 2e-(v0, k0, λ) design and each 0 ≤ i ≤ e, the value of the rational function pi at
the point (v0, k0) is an integer.

Proof. Let

Ψe,v0,k0 :=
e!(
v0−e
e

)Φe,v0,k0 ,
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which is a monic polynomial in Q[x]. By Proposition 2.1, all roots of Ψe,v0,k0 , which is a constant multiple of
Φe,v0,k0 , are intersection numbers, which are all integers. Thus, the monic polynomial Ψe,v0,k0 has integral
coefficients. We proceed with the following calculation:

Ψe,v0,k0(x) =

e∑
i=0

(−1)e−i
(

e

e− i

)
(k0 − e)e−i(k0 − e+ 1)e−i

(v0 − 2e+ 1)e−i
· xi

=

e∑
i=0

(−1)ipi(v0, k0) · xe−i.

For each i, the polynomial xe−i ∈ Z[x] is a monic polynomial of degree e − i. Therefore, all pi(v0, k0) are
integers.

3 Some ideals

In this section, we encounter some ideals I and try to find an explicit positive integer n in the intersection
of I and Z. In practice, for an explicitly given ideal I ⊆ Z[x1, . . . , xm], we could compute the Gröbner basis
of I over Z to get the intersection I ∩ Z. More precisely, if the Gröbner basis contains an integer, then that
integer is a generator of I ∩ Z, and if it does not contain an integer, then I ∩ Z is trivial. Our key result in
this section is Lemma 3.3, which is used in the proof of Lemma 4.1, and this latter lemma is an essential
ingredient in the proof of Theorem 1.1. The smaller n is, the smaller the positive integer ce in Theorem 1.1
is.

Lemma 3.1. Let d be a nonnegative integer and x0, x1 be integers. Let fd := (x+ x0)d and gd := (x+ x1)d

be polynomials in Z[x], and consider the ideal Id,x0,x1 := 〈fd, gd〉 in Z[x]. The following statements hold.

(i) The intersection Id,x0,x1 ∩ Z is trivial if and only if x1 − x0 ∈ [0, 2d − 2], where [0, 2d − 2] := ∅ when
d = 0.

(ii) (x1 − x0)2d−1 ∈ Id,x0,x1 ∩ Z.

Proof. Let I := Id,x0,x1 .
(i) It suffices to prove that Q I ∩ Q is trivial if and only if x1 − x0 ∈ [0, 2d − 2]. The ring Q[x] is a
principal ideal domain, so the greatest common divisor of fd and gd is a generator of Q I. The zeros of fd
are [−x0 − d + 1, x0] ∩ Z, and the zeros of gd are [−x1,−x1 + d − 1] ∩ Z. So, fd and gd have a common
factor of positive degree if and only if [−x0 − d + 1, x0] ∩ [−x1,−x1 + d − 1] 6= ∅, which is equivalent to
x1 − x0 ∈ [0, 2d− 2]. Thus, Q I ∩Q is empty if and only if x1 − x0 ∈ [0, 2d− 2].

(ii) Let z := x1 − x0, so that fd = (x+ x0)d and gd = (x+ z + x0)d. Now, regard fd and gd as polynomials
in Z[z][x], which is the ring of polynomials in x with coefficients in Z[z], and regard I as an ideal in Z[z][x].
It suffices to prove that z2d−1 ∈ I ∩ Z[z].

Let f ′d := xd ∈ Z[x], g′d := zd ∈ Z[z] and J := 〈f ′d, g′d〉 be an ideal in Z[z][x]. Then, a linear change of
variable gives a ring isomorphism Z[z][x]/I ∼= Z[z][x]/J . Evaluation at (α, β), where α runs over zeros of

g′d ∈ Z[z] and β runs over zeros of f ′d ∈ Z[x], gives a ring monomorphism Z[z][x]/J ↪→ Zd
2

. Now we have a
chain of ring monomorphisms

Z[z]/(I ∩ Z[z]) ↪→ Z[z][x]/I ∼= Z[z][x]/J ↪→ Zd
2

,

where the first monomorphism is induced from the inclusion Z[z] ↪→ Z[z][x]. Since Zd
2

is a reduced ring,
Z[z]/(I ∩ Z[z]) is reduced as well, which implies that I ∩ Z[z] is a radical ideal of Z[z].

The resultant of fd and gd, regarded as polynomials in x with coefficients in Z[z], is

resx(fd, gd) =

2d−1∏
i=0

(z − i)min{i+1,2d−i} ∈ Z[z].

Since resx(fd, gd) ∈ I ∩ Z[z] and I ∩ Z[z] is a radical ideal, the square-free part of the resultant, z2d−1, is in
I ∩ Z[z].
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Let ud,x0,x1 be the nonnegative generator of Id,x0,x1 ∩ Z, and let

vd,x0,x1 :=

{
(x1−x0)

2d−1

ud,x0,x1
, ud,x0,x1

6= 0,

0, ud,x0,x1 = 0.

According to Lemma 3.1, ud,x0,x1 divides (x1 − x0)2d−1, hence vd,x0,x1
is always an integer. It seems that

the generator ud,x0,x1 is very close to (x1 − x0)2d−1, in the sense that vd,x0,x1 is much smaller than ud,x0,x1

and (x1 − x0)2d−1. Based on computations, we propose Conjecture 3.2, and Table 3.1 gives some evidence
for d = 3 or 4.

x1 − x0 u4,x0,x1 (x1 − x0)7 v4,x0,x1 u3,x0,x1 (x1 − x0)5 v3,x0,x1

−1 2520 −5040 −2 120 −120 −1
−2 10080 −40320 −4 120 −720 −6
−3 90720 −181440 −2 840 −2520 −3
−4 30240 −604800 −20 3360 −6720 −2
−5 166320 −1663200 −10 5040 −15120 −3
−6 997920 −3991680 −4 5040 −30240 −6
−7 4324320 −8648640 −2 55440 −55440 −1
−8 4324320 −17297280 −4 15840 −95040 −6
−9 3243240 −32432400 −10 51480 −154440 −3
−10 2882880 −57657600 −20 120120 −240240 −2

Table 3.1: Comparison of ud,x0,x1
and (x1 − x0)2d−1 for d = 3, 4. The columns for v4,x0,x1

and v3,x0,x1
are

periodic with periods 10 and 6, respectively.

Conjecture 3.2. Let d be a nonnegative number. The following statements hold:

(i) vd,1,0 divides vd,x0,x1
.

(ii) vd,1,0 divides the (d− 2)-th generalized Catalan number with respect to function f(n) := n/rad(n) in
the sense of [6].

(iii) The sequence {vd,x0,0}x0≥1 is periodic in the sense that for all x0 ≥ 0, we have vd,x0+p,0 = vd,x0,0 for
some positive integer p depending on d. Moreover, the period is 1, 2, 6, 10, 70, 126, 154, 286 when d is
1, 2, 3, 4, 5, 6, 7, 8, respectively.

The following lemma studies the two variable version of Lemma 3.1.

Lemma 3.3. Let d be a nonnegative integer and x0, y0, x1, y1 be integers. For each 0 ≤ i ≤ d, let fd,i :=

(x+ x0)i(y + y0)d−i and gd,i := (x+ x1)i(y + y1)d−i be polynomials in Z[x, y]. Consider the ideal

Id,x0,y0,x1,y1 := 〈fd,i, gd,i : 0 ≤ i ≤ d〉

in Z[x, y]. Then, the ideal Id,x0,y0,x1,y1∩Z contains the three ideals Id,x0,x1
∩Z, Id,y0,y1∩Z and Id,x0+y0,x1+y1∩

Z, which are defined as in Lemma 3.1.

Proof. Let J := Id,x0,y0,x1,y1 . The result holds trivially when d = 0. Assume that d ≥ 1. Since fd,d = (x+x0)d

and gd,d = (x + x1)d, we have J ∩ Z ⊇ 〈fd,d, gd,d〉 ∩ Z = Id,x0,x1
∩ Z. Similarly, since fd,0 = (y + y0)d and

gd,0 = (y + y1)d, we have J ∩ Z ⊇ 〈fd,0, gd,0〉 ∩ Z = Id,y0,y1 ∩ Z.
The sum of fd,i and fd,i+1 is in the ideal J :

J 3fd,i + fd,i+1

=(x+ x0)i(y + y0)d−i−1((x+ x0 + i) + (y + y0 + d− i− 1))

=(x+ x0)i(y + y0)d−i−1(x+ y + x0 + y0 + d− 1)

=(x+ y + x0 + y0 + d− 1)fd−1,i.
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Using induction on the equation above, we obtain

(x+ y + x0 + y0)d =(x+ y + x0 + y0 + d− 1)df0,0

=

d∑
i=0

(
d

i

)
fd,i ∈ J.

(3.1)

We do the same thing for g’s and get

J 3gd,i + gd,i+1

=(x+ x1)i(y + y1)d−i−1((x+ x1 − i) + (y + y1 − d+ i+ 1))

=(x+ x1)i(y + y1)d−i−1(x+ y + x1 + y1 − d+ 1)

=(x+ y + x1 + y1 − d+ 1)gd,i.

Again using induction, we have

(x+ y + x1 + y1)d =(x+ y + x1 + y1 − d+ 1)dg0,0

=

d∑
i=0

(
d

i

)
gd,i ∈ J.

(3.2)

Therefore, combining Eqs. (3.1) and (3.2), it follows that J∩Z ⊇ 〈(x+y+x0+y0)d, (x+y+x1+y1)d〉∩Z =
Id,x0+y0,x1+y1 ∩ Z.

y1 − y0
7 2520 2520 2520 2520 2520 2520 2520 2520 2520 2520 2520 2520 2520 2520 2520 2520
6 2520 1080 360 720 1080 360 360 0 360 360 1080 720 360 1080 2520
5 2520 360 240 720 360 120 0 0 120 360 720 240 360 2520
4 2520 720 720 144 72 0 0 0 72 144 720 720 2520
3 2520 1080 360 72 0 0 0 0 72 360 1080 2520
2 2520 360 120 0 0 0 0 0 120 360 2520
1 2520 360 0 0 0 0 0 0 360 2520
0 2520 0 0 0 0 0 0 0 2520
-1 2520 360 120 72 72 120 360 2520
-2 2520 360 360 144 360 360 2520
-3 2520 1080 720 720 1080 2520
-4 2520 720 240 720 2520
-5 2520 360 360 2520
-6 2520 1080 2520
-7 2520 2520
-8 2520

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 x1 − x0

Table 3.2: The generators of the intersections of I4,x0,y0,x1,y1 and Z.

We list the intersection of the ideal I4 and Z in Table 3.2. We can read some patterns from the table.
For instance, we see some constant lines, and the table is symmetric with respect to the three medians of
the triangle made by zeros. Computations support the following conjecture.

Conjecture 3.4. Let Id,x0,y0,x1,y1 be the ideal defined in Lemma 3.3, and let ud,x0,y0,x1,y1 be the nonnegative
generator of Id,x0,y0,x1,y1 ∩ Z. The following statements hold.

(i) ud,0,0,x1,y1 is a multiple of d!.

(ii) ud,0,0,x1,y1 = ud,0,0,y1,x1 = ud,0,0,x1,2d−2−x1−y1 = ud,0,0,2d−2−x1−y1,y1 .

(iii) If x1 = 2d− 1, or y1 = 2d− 1, or x1 + y1 = −1, then ud,0,0,x1,y1 = ud,1,0.

Motivated by the one-variable case in Lemma 3.1 and the two-variable case in Lemma 3.3, we conjecture
below the existence of a similar phenomenon for an arbitrary number of variables. For an n-part partition
λ = (λ1, . . . , λn) of a nonnegative integer d and x = (x1, . . . , xn) ∈ Zn, let

xλ :=

n∏
i=1

xλi
i and xλ :=

n∏
i=1

x
λi

i

be the λ-rising factorial of x and the λ-falling factorial of x, respectively.
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Conjecture 3.5. Let d be a nonnegative integer and x0,x1 ∈ Zn. For each n-part partition λ of d, let

fλ := (x+x0)λ and gλ := (x+x1)λ be polynomials in Q[x]. The ideal of Q[x] generated by fλ and gλ, where
λ runs over all n-part partitions of d, is not the whole ring if and only if x1−x0 ≥ 0 and ‖x1−x0‖1 ≤ 2d−2.

4 Proof of Theorem 1.1

For each e+ 1 ≤ i ≤ 2e, let

λi :=
1

e!

ki

(v − e)i−e
∈ Q(v, k). (4.1)

It is well known that a t-design B is also an i-design for each i ≤ t. In particular, in the case where B is a
tight 2e-(v0, k0, λ) design, it is also an i-(v0, k0, λi(v0, k0)) design for each e+ 1 ≤ i ≤ 2e.

Lemma 4.1. For every 0 ≤ i ≤ e, the rational function ce,ihi (see Eq. (1.1)), where

ce,i := (2e− 2)!

e∏
j=i

j!,

is a Z[v, k]-linear combination of p1, . . . , pe (see Eq. (2.1)) and λe+1, . . . , λ2e.

Proof. First, h0 = k − e ∈ Z[v, k], so we only need to consider h1, . . . , he. For each 1 ≤ i ≤ e, let

fi := (−1)i−1e!λe+i = (−k + e+ 1)i−1(v − 2e+ 1)e−i · he,

and

gi := (−1)i−1
(
e

i

)−1
(k)e−ipi = (−k + e− 1)i−1(v − e)e−i · he.

By Lemma 3.3 applied with the variables x = −k, y = v and the parameters x0 = e + 1, y0 = −2e + 1,
x1 = e− 1, y1 = −e and d = e− 1, the ideal in Z[v, k],

〈fi/he, gi/he : 1 ≤ i ≤ e〉

=〈(−k + e+ 1)i−1(v − 2e+ 1)e−i, (−k + e− 1)i−1(v − e)e−i : 1 ≤ i ≤ e〉

contains the ideal Id,x0,x1 ∩ Z = Ie−1,e+1,e−1 ∩ Z, which is defined in Lemma 3.1.
By Lemma 3.1, (2e−2)! ∈ Ie−1,e+1,e−1∩Z, therefore, (2e−2)!he is a Z[v, k]-linear combination of f1, . . . , fe

and g1, . . . , ge, hence (2e− 2)!e!he = ce,ehe is a Z[v, k]-linear combination of p1, . . . , pe and λe+1, . . . , λ2e.

Let i be an arbitrary integer in [1, e−1]. In the quotient ring Z[k]/(k−e+ i+1), we have (k−e+1)i−1 =

(−i)i−1 = (−1)i−1i!. So, we can express (k − e + 1)i−1 as (k − e + i + 1)ui + (−1)i−1i! for some ui ∈ Z[k].
Then,

(v − 2e+ i+ 1)ui · hi+1

=(k − e+ i+ 1)ui · hi
=((k − e+ 1)i−1 + (−1)ii!) · hi
=(k − e+ 1)i−1 · hi + (−1)ii! · hi

=

(
e

i

)−1
· pi + (−1)ii! · hi,

which shows that ce,ihi = ce,i+1i!hi is a Z[v, k]-linear combination of ce,i+1hi+1 and pi. The result follows
by an induction.

We can now prove Theorem 1.1.
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Proof of Theorem 1.1. Assume that there exists a tight 2e-(v0, k0, λ) design B. By Corollary 2.2, pi takes
an integer value at (v0, k0) for every 1 ≤ i ≤ e. The 2e-design B is also an i-(v0, k0, λi) design for each
e + 1 ≤ i ≤ 2e, so λi in Eq. (4.1) takes an integer value at (v0, k0) as well. Due to Lemma 4.1, for every
0 ≤ i ≤ e, the rational function ce,ihi is a Z[v, k]-linear combination of p1, . . . , pe and λe+1, . . . , λ2e, hence it
takes an integer value at (v0, k0). The result follows from the fact that the integer ce,i is always a divisor of
ce,0, and ce,0 has only prime factors no greater than 2e− 2.

Remark 4.2. When e = 4, we can give explicit Z[v, k]-linear combinations for some multiples of hi:

q4 := 24h4 = 288(v − 7)(k − 5)λ6 − 96((v − 15)(k − 13)− 64)λ7
−24(38v + 3k − 262)λ8 + 6(k − 5)k(k − 1)(k − 2)p1
−2((v − 6)(k − 5) + 1)k(k − 1)p2
+((v − 9)(k − 4) + 2)kp3 + (2v + 3k − 22)p4,

q3 := 144h3 = 6p3 − (v − 4)(k − 5)q4,
q2 := 288h2 = −24p2 + (v − 5)q3,
q1 := 4h1 = p1,
q0 := h0 = k − 4.

The expression for q4 is obtained by calculating the Gröbner basis for a certain ideal, and the expressions
for q3 and q2 follow from the proof of Lemma 4.1.

Using the formulas in Remark 4.2, Proposition 4.3 strengthens Theorem 1.1 in the case e = 4. The proof
of Proposition 4.3 is very similar to the proof of Theorem 1.1 and is not presented here.

Proposition 4.3. If there exists a nontrivial tight 8-(v0, k0, λ) design, then the rational functions q0, . . . , q4
take integer values at (v0, k0). In particular, we could take c4 = 288 in Theorem 1.1.

Remark 4.4. If there exist infinitely many nontrivial tight 2e-designs for a fixed e, then by Theorem 1.1, the
hi take bounded denominator value infinitely many times in the region v >k + 2e. Up to a linear change of
variables, the expression hi is equal to the expression appearing in Conjecture 4.5. It is immediate to see
that if Conjecture 4.5 below holds for n = e0, then for all e ≥ e0, there are only finitely many nontrivial
tight 2e-designs. Furthermore, any effective solution to Conjecture 4.5 could lead to effective bounds for v
and k.

Conjecture 4.5. Let n be an integer at least 3. For every nonzero integer c, there are only finitely many
pairs (x, y) of positive integers satisfying y ≥ x+ 2 and such that for every 1 ≤ i ≤ n,

xi+1

yi
∈ 1

c
Z .

(In other words, x(x+1)
y , x(x+1)(x+2)

y(y+1) , . . . , have denominators that divide c.)

In the case where n = 3 and c = 1, there do not exist any such pairs for x up to 5 billion. More evidence
is given in [10].

5 Asymptotic behavior of f4

Let f4 ∈ Z[v, k] be the polynomial of degree 13 given in §A. The polynomial f4 was first found by E. Bannai
and T. Ito in an unpublished work [2], and it is shown in [2] that for all but finitely many nontrivial tight
8-designs B, f4(v0, k0) = 0 where (v0, k0) are the parameters of B. The polynomial was rediscovered by
P. Dukes and J. Short-Gershman in [5] and they strengthen the result in [2] as follows.

Proposition 5.1 ([5, §4]). If there exists a nontrivial tight 8-(v0, k0, λ) design, then f4(v0, k0) = 0.

The polynomial f4 satisfies Runge’s condition [13], so by Runge’s theorem [13], it has finitely many
integral solutions (an algebraic description of Runge’s theorem could be found in [16, Chapter 2]). Using
this approach, E. Bannai and T. Ito showed in [2] that there are only finitely many tight 8-designs.
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Quantitative versions of Runge’s theorem have been established, and using the results in [8] and [15], we

can obtain the bounds ee
8600

and ee
22

, respectively, for the size max(|v0|, |k0|) of an integral solution (v0, k0).
The bounds are too large for any computer search to terminate.

The curve defined by the polynomial f4 has an involution (v, k) 7→ (v, v − k), which corresponds to the
construction of complementary designs. The geometric genus of the curve is 20, so by Faltings’ theorem [9,
Theorem E.0.1], the curve has only finitely many rational points. However, Faltings’ theorem is not effective.

There are 32 known rational zeros of f4(v, k). They are (−1,−3), (−1,−2), (−1, 1), (−1, 2), (11/5, 1),
(11/5, 6/5), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (13/3, 2), (13/3, 7/3), (5, 1), (5, 2), (5, 3), (5, 4), (27/5, 2),
(27/5, 13/5), (27/5, 14/5), (27/5, 17/5), (6, 2), (6, 11/4), (6, 3), (6, 13/4), (6, 4), (125/19, 54/19), (125/19, 71/19),
(7, 3), (7, 4), (15, 2), (15, 13). However, we are unable to show that they are the only rational zeros. None of
the known zeros could be realized by nontrivial tight 8-designs, since for nontrivial tight 8-(v0, k0, λ) designs,
we have v0>k0 + 8 ≥ 16.

The main result of this section is Proposition 5.3, which describes the zeros of f4 in the region k ≥ 105

and 2k ≤ v ≤ 4
5k

2. In the remaining part of this section, the parameters v and k are assumed to be real
numbers.

Figure 5.1: Real zeros of f4 in the first quadrant.

We plot the reals zeros of f4 in Figure 5.1. In the first quadrant, the plot shows six branches likely going
to infinity (one branch is so close to the x-axis that it is indistinguishable from it in Figure 5.1). Some
necessary conditions for the existence of tight designs suggest that we should focus on the branches which
have growth rate of the form v = ak+ b+ o(1) with a ≥ 2. Figure 5.1 indicates that it is likely that there is
only one such branch but we do not need this fact here.

Lemma 5.2. If there exists a function ṽ(k) : R+ → R+ such f4(ṽ(k), k) = 0 and ṽ(k) ≥ 2k for all k ∈ R+,
and

ṽ(k) = ak + b+ o(1)

as k → +∞, then a = 2

1− 4
√

3
8

= 2
5 (8 + 2

√
6 +

√
48 + 22

√
6) ≈ 9.1971905725,

b = 23
500

(
249 + 86

√
6 +

√
171312 + 70918

√
6
)
≈ 48.1640392521.

(5.1)
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Proof. Since ṽ(k) ≥ 2k, we have a ≥ 2. Substituting ṽ(k) = ak + b+ o(1) into f4(ṽ(k), k), we obtain

0 = f4(ṽ(k), k) =− 128a(1− a)4(128− 256a+ 192a2 − 64a3 + 5a4)k13(
16(1− a)2(4096− 16384a+ 12288a2 + 20480a3

− 40232a4 + 27216a5 − 7976a6 + 512a7 + 21a8)

− 128(1− a)3(128− 1152a+ 2112a2 − 1600a3

+ 537a4 − 45a5)b

)
k12

+ o(k12)

as k → +∞. Therefore, the coefficients of k13 and k12 on the right-hand side must vanish, which gives us
the unique solution in Eq. (5.1).

Proposition 5.3. The real zeros (v, k) of the polynomial f4 in the region k ≥ 105 and 2k ≤ v ≤ 4
5k

2, satisfy

ak + b ≤ v ≤ ak + b+
1

100
,

where a and b are the numbers in Eq. (5.1).

The proof is given in §B.

6 Proof of Theorem 1.2

Assume that there exists a nontrivial tight 8-design. By the construction of complementary designs, we
know that there must then exist a nontrivial tight 8-(v0, k0, λ) design with parameters v0 ≥ 2k0 and k0 ≥ 8.
Furthermore, by Proposition 5.1, f4(v0, k0) = 0 holds. A computer check shows that the polynomial f4(v, k)
has no integer zeros in the region 8 ≤ k ≤ 105 and v ≥ 2k, so k0 ≥ 105.

Recall from Remark 4.2 and Proposition 4.3 that

q1 =
4(k − 4)(k − 3)

v
∈ Q(v, k),

and q1(v0, k0) is a positive integer. If q1(v0, k0) ∈ {1, 2, 3, 4}, then substituting v0 = 4(k0−4)(k0−3)
q1(v0,k0)

into

f4(v0, k0) = 0, we get k ∈ {2, 3, 4}, which is too small since k0 ≥ 105. Thus, q1(v0, k0) ≥ 5, which implies
that v0 ≤ 4

5k
2
0. Let

v− := ak + b and v+ := ak + b+
1

100
,

where a, b are given in (5.1). Applying Proposition 5.3, we know that v− ≤ v0 ≤ v+.
Let

X := 48q4 − 16q3 + 6q2 − 144q1 + 45q0 ∈ Q(v, k),

where q0, . . . , q4 ∈ Q(v, k) are given in Remark 4.2. The rational function X is an integral linear combination
of q0, . . . , q4. So, the number X(v0, k0) is an integral linear combination of q0(v0, k0), . . . , q4(v0, k0), which
are all integers by Proposition 4.3. Thus, X(v0, k0) is an integer as well.

Expanding now the expression of X(v0, k0), we obtain

X(v0, k0) =
9(k0 − 4)

(v0 − 7)4
(g0 − g1v0 + g2v

2
0 − g3v30 + g4v

4
0),
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where

g0 := 128k40 + 256k30 − 896k20 − 1024k0 − 1944,

g1 := 256k30 + 192k20 − 1088k0 − 2186,

g2 := 192k20 − 833,

g3 := 64k0 − 82,

g4 := 5,

and find that g0, . . . , g4 ≥ 0 since k0 ≥ 105. Therefore,

X(v0, k0) ≥ 9(k0 − 4)

(v+ − 7)4

(
g0 − g1v+ + g2v

2
− − g3v3+ + g4v

4
−

)
,

X(v0, k0) ≤ 9(k0 − 4)

(v− − 7)4

(
g0 − g1v− + g2v

2
+ − g3v3− + g4v

4
+

)
.

The right-hand sides of the above equations are single variable rational functions in k0. So, it is easy to show
that when k0 ≥ 105,

235 +
1

4
≤ X(v0, k0) ≤ 235 +

3

4
,

which contradicts the fact that X(v0, k0) is an integer.
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A The thirteen degree polynomial

f4(v, k) := −16384k12v+65536k12 +98304k11v2−393216k11v−253952k10v3 +786432k10v2 +1744896k10v−
3309568k10+368640k9v4−327680k9v3−8724480k9v2+16547840k9v−328320k8v5−1102464k8v4+17194752k8v3−
21567744k8v2 − 49810560k8v + 62323584k8 + 182784k7v6 + 2050560k7v5 − 16432128k7v4 − 13016064k7v3 +
199242240k7v2−249294336k7v−61184k6v7−1642240k6v6+6536960k6v5+58253568k6v4−293538048k6v3+
209662720k6v2 + 511604992k6v − 488998144k6 + 10752k5v8 + 698880k5v7 + 1258752k5v6 − 59703552k5v5 +
183266304k5v4+243542016k5v3−1534814976k5v2+1466994432k5v−640k4v9−143664k4v8−2296192k4v7+
27050224k4v6 − 7038496k4v5 − 582955856k4v4 + 1856597696k4v3 − 1428764528k4v2 − 1015706784k4v +
974873344k4 + 7520k3v9 + 772608k3v8− 2875616k3v7− 58917568k3v6 + 469164960k3v5− 1155170432k3v4 +
412538336k3v3 +2031413568k3v2−1949746688k3v+336k2v10−52816k2v9−1582560k2v8 +27560816k2v7−
127930016k2v6 + 28759472k2v5 + 1497511456k2v4 − 4944873072k2v3 + 6922441360k2v2 − 4733985888k2v +
1506333312k2 − 2352kv10 + 203472kv9 − 764688kv8 − 24513072kv7 + 293023248kv6 − 1459281552kv5 +
3929166288kv4−5947568016kv3+4733985888kv2−1506333312kv+45v11+972v10−191952v9+2961396v8−
14780538v7− 18769932v6 + 544096980v5− 2755473732v4 + 7281931941v3− 11097146016v2 + 9310949028v−
3408102864.

B Proof of Proposition 5.3

Lemmas B.1, B.2, B.3, and B.4, prove Proposition 5.3. The proofs of these lemmas are not difficult once the
appropriate auxiliary polynomials g has been explicitly identified. Such auxiliary polynomials were obtained
through an ad-hoc procedure that we will not describe here.
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Lemma B.1. If v ∈ [2k, 9k] and k ≥ 20000, then f4(v, k)> 0.

Proof. Let

g(v, k) :=65535k12 − 16404k12v + 98304k11v2 − 253969k10v3+

368584k9v4 − 328320k8v5 + 182701k7v6 − 61184k6v7+

10744k5v8 − 640k4v9 + 335k2v10 + 45v11.

View f4(v, k) and g(v, k) as polynomials in v with coefficients in R[k]. Using the fact that k ≥ 20000, we can
check that for every i ≥ 0, the coefficient of vi in f4(v, k) is no smaller than that in g(v, k), and for some i,
the coefficient of vi in f4(v, k) is strictly larger than that in g(v, k). So, we find that f4(v, k)>g(v, k) since
v ≥ 2k > 0.

Let t := v/k, so that t ∈ [2, 9]. We have

f4(v, k)>g(v, k) = g(tk, k) = h13(t)k13 + h12(t)k12 + h11(t)k11,

where

h13(t) :=− 16404t+ 98304t2 − 253969t3 + 368584t4

− 328320t5 + 182701t6 − 61184t7 + 10744t8 − 640t9,

h12(t) :=65535 + 335t10,

h11(t) :=45t11.

One verifies that h13, h12 and h11 are positive when t ∈ [2, 9], and then the result follows.

Recall the definitions of real numbers a and b in Eq. (5.1):a = 2

1− 4
√

3
8

= 2
5 (8 + 2

√
6 +

√
48 + 22

√
6) ≈ 9.1971905725,

b = 23
500

(
249 + 86

√
6 +

√
171312 + 70918

√
6
)
≈ 48.1640392521.

Lemma B.2. If v ∈ [9k, ak + b] and k ≥ 100, then f4(v, k)> 0.

Proof. Let t := ak + b− v, so that t ∈ [0, (a− 9)k + b] ⊆ [0, 0.9k] when k ≥ 100. Let

g(t, k) :=13700000000tk12 − 13400000000t2k11 − 140000000t3k10

− 1380000000t4k9 − 6000000t5k8 − 21000000t6k7

− 10000t7k6 − 73000t8k5 − 40000t9k3 − 7t9k4

− 50000t10k − 200t10k2 − 312000000000t11.

View f4(ak + b − t, k) and g(t, k) as polynomials in k with coefficients in R[t]. Using the fact that t ≥ 0,
we can check that for every i ≥ 0, the coefficient of ki in f4(ak + b− t, k) is no smaller than that in g(t, k),
and for some i, the coefficient of ki in f4(ak+ b− t, k) is strictly larger than that in g(t, k). So, we find that
f4(ak + b− t, k)>g(t, k) since k > 0.

Let s := t/k, so that s ∈ [0, 0.9]. We have

f4(v, k) = f4(ak + b− t)>g(t, k) = g(sk, k) = h13(s)k13 − h12(s)k12 − h11(s)k11,

where

h13(s) :=13700000000s− 13400000000s2 − 140000000s3

− 1380000000s4 − 6000000s5 − 21000000s6 − 10000s7

− 73000s8 − 7s9,

h12(s) :=40000s9 + 200s10,

h11(s) :=50000s10 + 312000000000s11.
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One verifies that h13, h12 and h11 are positive when s ∈ [0, 0.9]. Since k ≥ 100

f4(v, k)>h13(s)k13 − h12(s)k12 − h11(s)k11 ≥ (h13(s)− h12(s)/100− h11(s)/1002)k13

=

(
13700000000s− 13400000000s2 − 140000000s3

− 1380000000s4 − 6000000s5 − 21000000s6 − 10000s7

− 73000s8 − 407s9 − 7s10 − 31200000s11
)
k13.

The result follows from the fact that the right-hand side of the expression above is positive when s ∈
[0, 0.9].

Lemma B.3. If ak + b+ 1
100 ≤ v ≤ 10k and k ≥ 105, then f4(v, k)< 0.

Proof. Let t := v − ak − b, so that t ∈ [ 1
100 , (10− a)k − b] ⊆ [ 1

100 , k] when k ≥ 105. Let

g(t, k) :=− 137892000k12 + 13318642886180k11 + 713748202323829k10

+ 48837673261525668k9 + 5098485316801241991k8

+ 980132640412645508268k7 + 488910709935302976594934k6

+ 1305009906289977795675277621k5

+ 151418572251274917743210971453210k4

+ 64000t9k3 + 2000t10k2 + 7000t10k + 127t11.

View f4(ak + b + t, k) and g(t, k) as polynomials in k with coefficients in R[t]. Using the fact that t ≥ 1
100 ,

we can check that for every i ≥ 0, the coefficient of ki in f4(ak + b + t, k) is no larger than that in g(t, k),
and for some i, the coefficient of ki in f4(ak+ b+ t, k) is strictly smaller than that in g(t, k). So, we find that
f4(ak + b+ t, k)<g(t, k) since k > 0. It follows from t ≤ k that g(t, k) ≤ g(k, k). It is easy to show the one
variable polynomial g(k, k) takes negative value when k ≥ 105. Thus, f4(v, k)<g(t, k) ≤ g(k, k)< 0.

Lemma B.4. If v ∈ [9.24k, 0.8k2] and k ≥ 105, then f4(v, k)< 0.

Proof. Let

g(v, k) :=65536k12 − 16384k12v + 98312k11v2 − 253952k10v3

+ 368640k9v4 − 328299k8v5 + 182784k7v6 − 61177k6v7

+ 10752k5v8 − 639k4v9 + 336k2v10 + 45v11.

View f4(v, k) and g(v, k) as polynomials in v with coefficients in R[k]. Using the fact that k ≥ 105, we can
check that for every i ≥ 0, the coefficient of vi in f4(v, k) is no larger than that in g(v, k), and for some i,
the coefficient of vi in f4(v, k) is strictly smaller than that in g(v, k). So, we find that f4(v, k)<g(v, k) since
v > 0.

Let t := v/k, so that t ∈ [9.24, 0.8k]. Let

h(x) :=− 1 + 16384x− 98312x2 + 253952x3 − 368640x4

+ 328299x5 − 182784x6 + 61177x7 − 10752x8 + 639x9.

We have

f4(v, k)<g(v, k) = g(tk, k)

=−
(
k − 65536

)
k12 −

(
h(t)− 298t9

)
k13

−
(
298− 336(t/k)− 45(t/k)2

)
t9k13 (B.1)

=−
(
k − 65536

)
k12 −

(
h(t)− 0.1t9

)
k13

−
(
0.1− 336(t/k)− 45(t/k)2

)
t9k13. (B.2)
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It suffices to prove that the coefficients of k12, k13 and t9k13 in Eq. (B.1) are all negative, or those
coefficients in Eq. (B.2) are all negative. Since k ≥ 105, we have 0.00026k2 ≥ 26k. So, either v ≥ 26k or
v ≤ 0.00026k2.
Case 1: v ∈ [26k, 0.8k2], so that t ∈ [26, 0.8k] and t/k ∈ [0, 0.8].

Consider Eq. (B.1). The result follows from the following facts:

(i) k − 65536 ≥ 0;

(ii) h(t)− 298t9 ≥ 0 when t ≥ 26;

(iii) 298− 336(t/k)− 45(t/k)2 ≥ 0 when t/k ∈ [0, 0.8].

Case 2: v ∈ [9.24k, 0.00026k2] so that t ∈ [9.24, 0.00026k] and t/k ∈ [0, 0.00026].
Consider Eq. (B.2). The result follows from the following facts:

(i) k − 65536 ≥ 0;

(ii) h(t)− 0.1t9 ≥ 0 when t ≥ 9.24;

(iii) 0.1− 336(t/k)− 45(t/k)2 ≥ 0 when t/k ∈ [0, 0.00026].
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