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1. Introduction

Xiang proves the non-existence of non-trivial tight 8-designs in algebraic combinatorics in
[27, 1.2]. His method of proof led him to a conjecture in elementary number theory which,
if true, could be used to give a new proof of the fact that there exist only �nitely non-trivial
tight 2e-designs for e � 4. His conjecture 4.5 in [27] can be stated as follows.

Conjecture 1.1. (Z. Xiang) Let n � 3 be an integer. For every nonzero integer c, there are
only �nitely many pairs (x; y) of positive integers satisfying y � x + 2 and such that the n
rational numbers

x(x+ 1)

y
;
x(x+ 1)(x+ 2)

y(y + 1)
; : : : ;

x(x+ 1)(x+ 2) � � � (x+ n)

y(y + 1) � � � (y + n� 1)

all have denominators that divide c.

We show in 3.7 that Conjecture 1.1 can be reduced to a statement pertaining to only one
of the rational functions appearing in 1.1. Namely, we prove that Conjecture 1.1 follows
from Conjecture 1.2 below.

Conjecture 1.2. (a) Fix a positive integer c, c 6= 1; 4. Then the equation

(1.3) cx(x+ 1)(x+ 2)(x+ 3) = by(y + 1)(y + 2)

has only �nitely many solutions in positive integers (x; y; b) with y � x+2 and gcd(b; c) =
1.

(b) Let c = 1 or c = 4. Then Equation (1.3) has only �nitely many solutions in positive

integers (x; y; b) with y � x + 2 in addition to the in�nite family of solutions described

in Proposition 3.5.

Equations of the form (1.3) have been studied already by several authors. A summary of
earlier work on this type of equations when b and c are �xed is found in the introduction of
Saradha and Shorey [19], where its study is motivated by a problem of Erd�os. The integer
solutions to (1.3) have been completely determined for instance when c = b = 1 [4], and
when c = 1 and b = 4 [21, Table T34]. We provide in section 2 extensive numerical evidence
that Conjecture 1.2 might hold.
We investigate in this article whether there might exist general principles pertaining to

a wider class of equations that could be applied to the particular Equation (1.3). For this,
we will consider equations of the form f(x) = bg(y) where f(x) 2 Z[x] and g(y) 2 Z[y]
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have positive degree, and ask whether conditions can be given on x and y to insure that
on a certain region R of the (x; y)-plane, the equation f(x) = bg(y) only has �nitely many
integer solutions (x0; y0; b0) with (x0; y0) 2 R. The diophantine properties of equations of
the type f(x) = g(y) is a subject with a long history, and we refer to [2] for some relevant
literature. A �rst such region R is easily obtained in our next proposition, proved in 4.1.
Let D := deg(f)

deg(g)
.

Proposition 1.4. Let f(x) 2 Q[x] and g(y) 2 Q[y] be of positive degree. Let � > 0.
Then there exist only �nitely many solutions (x0; y0; b0) in positive integers to the equation

f(x) = bg(y) such that y0 � xD+�
0 . This set of solutions is e�ectively computable.

Let us recall here some geometric facts that will allow us to strengthen the above proposi-
tion. Let Q(a) denote the �eld of rational functions in the variable a, with algebraic closure

Q(a). Let f(x) 2 Q[x] and g(y) 2 Q[y] be of positive degree and consider the polynomial
f(x)� ag(y) 2 Q(a)[x; y]. Assume that this polynomial is geometrically irreducible (that is,

it is irreducible in Q(a)[x; y]. An example of a polynomial which in not irreducible in that
ring is xn � ayn for n � 2.) A geometrically irreducible polynomial f(x) � ag(y) de�nes
a unique smooth proper geometrically connected curve X=Q(a). We will always assume in
this article that the genus of X is positive. Then there exists only �nitely many rational
numbers b such that the polynomial f(x)� bg(y) is either not geometrically irreducible, or
is geometrically irreducible but the associated smooth proper geometrically connected curve
Xb=Q is not of genus equal to the genus of X.

Example 1.5 (a) Fix an integer c, c 6= 0. Then the polynomial

(1.6) cx(x+ 1)(x+ 2)(x+ 3)� ay(y + 1)(y + 2)

de�nes a smooth proper geometrically connected curve of genus 3 over Q(a). When b is a
non-zero integer, the equation

(1.7) cx(x+ 1)(x+ 2)(x+ 3) = by(y + 1)(y + 2)

de�nes a smooth proper geometrically connected curve of genus 3 over Q.
(b) The polynomial

(1.8) x(x+ 1)(x+ 2)(x+ 3)� ay(y + 1)

de�nes a smooth proper geometrically connected curve of genus 1 over Q(a). The curve has
two involutions given by x 7! �x � 3 and y 7! �y � 1. The Jacobian of X has j-invariant

equal to (a+13=3)3

(a�4)2(a+9=4)
. The equation

(1.9) x(x+ 1)(x+ 2)(x+ 3) = by(y + 1)

with b = 4 de�nes an a�ne plane curve with a singularity at (�;�1=2) with �2+3�+1 = 0,
whose smooth projective model Xb=4=Q has genus 0. The a�ne curve can be parameterized
by x(t) = t and y(t) = t(t+ 3)=2. In particular, this a�ne curve has in�nitely many integer
points. When b = 12, the genus of Xb=12 is 1, and the integer solutions of (1.9) are described
in [21, Theorem A24]. An upperbound for max(jxj; jyj) in terms of b for an integer solution



INTEGRAL POINTS ON VARIABLE SEPARATED CURVES (DRAFT) 3

(x; y) of (1.9) can be obtained from Runge's method (see [22, Theorem, page 186]). We will
return to Equation (1.9) in section 6.

Proposition 1.10. Let f(x) 2 Q[x] and g(y) 2 Q[y] be of positive degree. Assume that the

polynomial f(x)� ag(y) = 0 de�nes a smooth proper geometrically connected curve X=Q(a)
of positive genus. Then there exist only �nitely many solutions (x0; y0; b0) in positive integers

to the equation f(x) = bg(y) such that the associated smooth proper geometrically connected

curve Xb0 has positive genus and such that y0 � xD0 .

This proposition, proved in 4.2, follows from Siegel's Theorem on integer points on a�ne
curves ([9, D.9.2.2]). We investigate in this article whether Proposition 1.10 could be
strengthened to state that there exists � > 0, depending on f and g, such that there there ex-
ist only �nitely many solutions (x0; y0; b0) in positive integers to the equation f(x) = bg(y)
such that the associated smooth projective curve Xb0 has positive genus and such that
y0 � xD��0 . Our main result on this question is Proposition 4.3, whose proof assumes that
the abc-conjecture holds.

1.11 In Conjecture 1.2, the equation f(x) = bg(y) is such that D = 4=3. The conjecture
asserts that when c 6= 1; 4, there exists only �nitely many solutions (x0; y0; b0) in positive
integers such that y � x + 2. There exist in�nitely many solutions (x0; y0; b0) in positive
integers such that y0 = x0 +1, due to the following parametric family of solutions: x(t) = t,
y(t) = t + 1, and b(t) = t. More generally, let f(x) 2 Z[x] and g(y) 2 Z[y] have positive
degree, and suppose that we can �nd x(t); y(t); b(t) 2 Q[t] such that the equation

f(x(t)) = b(t)g(y(t))

holds in Q[t]. Clearly when x(t) is not constant,

(1.12)
degt(y)

degt(x)
=

deg(f)

deg(g)
� degt(b)

deg(g) degt(x)
� deg(f)

deg(g)
=: D:

Let Int(Z) denote the ring of integer-valued polynomials (that is, polynomials h(t) 2 Q[t]
with h(Z) � Z.)
Proposition 1.13. Let f(x) 2 Z[x] and g(y) 2 Z[y] have positive degree. Assume that f(x)�
ag(y) is geometrically irreducible in Q(a)[x; y], and that its associated smooth projective

curve over Q(a) has positive genus. Suppose that we can �nd a solution as above with

x(t); y(t); b(t) 2 Int(Z) and both x(t) and b(t) not constant. Assume in addition that the

leading coe�cients of x(t), y(t), and b(t) have positive leading coe�cients. If there exists

� > 0 such that there exist only �nitely many solutions (x0; y0; b0) in positive integers to the

equation f(x) = bg(y) such that y0 � xD��0 , then

degt(y)

degt(x)
< D � �:

Consider then the set

D :=
ndegt(y)
degt(x)

; with x(t); y(t); b(t) as in 1:13
o
:
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As noted in (1.12), D is bounded above by D. Any reduced fraction �=� with �=� < D
could possibly belong to D. Indeed, this would happen if a solution with degt(x) = �,
degt(y) = �, and degt(b) = D�� � could be found. The only known restriction comes from
Mordell's Conjecture over function �elds (see, e.g., [18] or [25]), which, when applicable,
implies that the set D can only contain at most �nitely many fractions with D� � � = 1.
On the other hand, in the context of Conjecture 1.2 (a), if this conjecture holds, then the
corresponding set D does not intersect the region (1;1), and in particular, in this case
we expect supD < D = 4=3. We investigate in section 5 whether the strict inequality
supD < D might hold more generally. Among other results, we show the following theorem.
Recall that when F is any �eld and g(t) 2 F [t], then the radical rad(g) is de�ned to be the
product of the distinct irreducible factors of g.

Theorem 1.14. (See Theorem 5.8.) Let f(x) 2 Q[x] and g(y) 2 Q[y]. Let (x0(t); y0(t); b0(t))
be a solution of the equation f(x) = bg(y) with x0(t); y0(t); b0(t) 2 C[t] and x0(t) not constant.
If g has at least one multiple root, and deg(f) > deg(g) and f has no multiple roots, then
degt(y0)
degt(x0)

< 1
deg(g)�deg(rad(g))

< deg(f)
deg(g)

:

There are about 369;000 positive integer solutions (x; y; b; c) to Equation (1.9), with c 2
[1; 300], x 2 [1; 109], gcd(b; c) = 1, b 6= 4c and log(y)

log(x)
� 4=3. In section 6, we remove from

this set of solutions all solutions which can be explained `geometrically', that is, solutions
which we found to belong to a parametric family, and introduce a counting function N(B)
for the remaining set of `not-geometrically explained' solutions. The data in 6.7 shows a
surprisingly good �t between N(B) and a function of the form �� �e�
B, where �; �; 
 are
positive constants. It would be interesting to provide a heuristic or theoretical argument
that would explain this �t.
The authors thank Andrew Granville for helpful remarks. Lorenzini was partially sup-

ported by a NSA grant. Xiang gratefully acknowledges �nancial support from the Research
and Training Group in Algebra, Algebraic Geometry, and Number Theory, at the University
of Georgia. Extensive computations were performed at the Georgia Advanced Computing
Resource Center at the University of Georgia.

2. Numerical evidence

Our goal in this section is to provide some numerical evidence that Conjecture 1.2 (a)
holds. Let f(x) := x(x+1)(x+2)(x+3) and g(x) := x(x+1)(x+2). Fix a positive integer
c. Consider the diophantine equation (1.3) cf(x) = bg(y) in the variables (x; y; b):

cx(x+ 1)(x+ 2)(x+ 3) = by(y + 1)(y + 2):

When c = 1, we �nd two obvious parametric solutions (x(t); y(t); b(t)) with integer polyno-
mials having positive leading coe�cients, namely (t� 3; t� 3; t) and (t; t+1; t). When c = 1
or c = 4, Equation (1.3) also admits a parametric family of solutions of a di�erent kind, with
y � x+ 2, and these cases are treated in the next section.
We computed the set of all solutions (x; y; b; c) of (1.3) with c 2 [1; 300], y � x+2, x � 109

and gcd(b; c) = 1. We found 5050 such solutions. The data is available for download on
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the website of the senior author. We report now on this data, which supports the above
conjecture.

Remark 2.1 The determination of all solutions to (1.3) for a given c is computationally
very expensive already when the upper bound for x is 109. We used 150 CPU cores on the
zcluster at the University of Georgia to produce our data. The computation of all solutions
with x � 109 was most expensive in the case of the prime c = 179, and took 82:45 days on a
single core. The case c = 1 took 80:45 days on a single core. The shortest case was c = 210,
where the computation took 1:93 days. Our algorithm runs as follows.
(1) Fix c, and for each x in the chosen domain, list all divisors b of f(x) such that

gcd(b; c) = 1.
(2) For each b found for a given x, check the existence of y such that cf(x) = bg(y). This

implies computing the deg(g)-root of cf(x)=b to some low precision, and then checking the
value g(y0) at a few integers y0 close to this root.

In step (1), instead of listing all divisors b of f(x) and then checking that gcd(b; c) = 1,
we list all divisors of

x

gcd(x; c)
� (x+ 1)

gcd(x+ 1; c)
� (x+ 2)

gcd(x+ 2; c)
� (x+ 3)

gcd(x+ 3; c)
:

Proceeding in this manner is much faster if c has many (small) prime factors, as in the case
of c = 210 mentioned above.

In the table below, for each value of c, we exhibit the solution (x; y; b) to (1.3) with
y � x+2 which has the largest value of x among the complete list of all such solutions with
x � 109 and gcd(b; c) = 1. As we shall see, this largest x-value remains quite small compared
to 109. We indicate also for a given c the number n of solutions to (1.3) with y � x+ 2 and
0 < x � 109.

c x y b n c x y b n

2 284 1064 11 9 22 260 262 5655 12

3 713 1610 187 10 23 59943 61594 1270834 41

5 285 350 779 19 24 284 286 6745 5

6 68 70 391 4 25 351 648 1412 12

7 9590 59730 278 17 26 635 1014 4081 20

8 142 638 13 5 27 320 322 8560 6

9 104 106 910 6 28 3924 20383 785 11

10 207 350 437 7 29 16352 29783 78504 34
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c x y b n c x y b n

11 1918 4520 1616 33 30 356 358 10591 5

12 140 142 1645 2 31 894 1610 4768 23

13 358015 564718 1185928 32 32 380 382 12065 2

14 779 1064 4301 14 33 15040 33462 45080 19

15 176 178 2596 6 34 620 712 13995 19

16 713 895 5797 5 35 1935 2924 19668 29

17 10582 37960 3899 34 36 10945 17710 93041 3

18 272 350 2329 7 37 8225 20349 20108 32

19 4030 9918 5143 37 38 18422 29279 174405 14

20 7565 25024 4183 7 39 197583 260494 3362621 20

21 6498 7370 93575 18 40 476 478 18921 6

Consider the parametric solution (x; y; b; c) to (1.3) with1

(2.2) x(c) := 12c� 4; y(c) := 12c� 2; b(c) := (12c� 7)c+ 1:

Among the solutions (x; y; b; c) with c 2 [1; 300], y � x+2, and x � 109, there are 83 values
of c, including c = 6; 9; 12; 15; 22; 24; 27; 30; 32; 40 in the above table, where for such c the
solution (x; y; b; c) with largest x-value is equal to the solution (2.2). In particular, for these
c-values, since x = 12c � 4, the `largest' solution found when c is �xed, has a very small
x-value. There are an additional 73 values of c where exactly one solution (x; y; b; c) has
y > max(x+ 2; 12c� 4).
In the complete list of all 5050 solutions to (1.3) with c 2 [1; 300], y � x + 2, x � 109,

and gcd(b; c) = 1, only 55 solutions (x; y; b; c) have x 2 [105; 109], and only 21 solutions have
x 2 [106; 109]. We list below the values c for which these 21 solutions with x > 106 occur:

1; 4; 44; 49; 65; 79; 89; 104; 139; 156; 161; 185; 223; 263; 298:

Five of these large solutions occur with c = 1 or 4, and as discussed in the next section, these
solutions in fact belong to an in�nite family. Of the 16 remaining solutions with c 6= 1; 4,
all have x 2 [106; 107], except when c = 79 and 156, where x 2 [107; 108]. The fact that
we found only a very small number of solutions with x 2 [106; 109], and that most of these
large x-values are close to 106, provides some evidence that Conjecture 1.2 may hold. We
list below the two solutions with x > 107 found when c 6= 1; 4. In case of c = 79, we found

1A slighly more general parametrization is as follows: x(c) := �c � 4, y(c) = �c � 2, and b(c) = (�c �
7)c + 12=�, with � a positive integer dividing 12. When c is prime to 6, such parametrization produces a
solution in positive integers with gcd(b; c) = 1.
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two solutions with x > 106. This also occurred for c = 89 and c = 263.

c x y b

79 1509512 36635458 8342

79 35125944 36635458 2445875082

156 75128030 122201728 2723331973

Remark 2.3 For the value c = 187, we found 69 solutions (x; y; b) in positive integers with
y > x + 1 and x � 109. For the values c = 32; 96; 108; 192; 200; 240; 252, the only solutions
to Equation (1.3) in positive integers with y > x + 1 and x � 109 have y = x + 2. It is
natural to wonder whether there exist in�nitely many values of c such that the only solutions
(x; y; b; c) in positive integers to Equation (1.3) with y > x+ 1 have y = x+ 2. We leave it
as an exercise to show that for a given c and for a given e � 2, there are only �nitely many
solutions in positive integers to (1.3) with y = x+ e.

Remark 2.4 For c = 1 and a �xed integer b, the set of integer solutions to the equation
(1.3) can be completely determined numerically when b is not too large. Indeed, the quotient
by the involution x 7! �x� 3 is an elliptic curve given by the a�ne equation X(X + 2) =
by(y + 1)(y + 2), with X := x(x + 3). Setting v := b(X + 1) and u := b(y + 1), we �nd an
integral equation for the quotient curve of the form v2 = u3 � b2u+ b2.
One can obtain the list of all integral points on this elliptic curve E using the function

E.integral points() in Sage [17]. It is then an easy matter to check what the integral solutions
of (1.3) are. When b = 1, the set of integral solutions was completely determined in [4].
When b = 4, the set of integral solutions is considered in [21, Table T34].
When both b and c are �xed, the equation (1.3) de�nes a curve of genus 3. The function

PointSearch in Magma [3] can be used to �nd rational solutions. We only found two values
of b=c where the associated curve has more than 37 points. When b=c = 243=182, Magma
�nds 44 rational points. When b=c = 247=7, Magma �nds 43 rational solutions, three of
them integral with y > x: (38; 40), (75; 98), and (492; 1188).

3. The cases c = 1 and c = 4.

Letting a := b=c, we call Xa=Q the plane curve given by

x(x+ 1)(x+ 2)(x+ 3) = ay(y + 1)(y + 2):

This curve has 12 obvious points, namely:

(x0; y0) with x0 2 f0;�1;�2;�3g and y0 2 f0;�1;�2g.
We discuss in this section how a special geometric fact about the curve Xa=Q a�ects its
arithmetic. Recall that given any �ve distinct points in the plane, no three on the same line,
there exists a unique smooth conic which contains them, and that in general six points are
not all contained on a single conic. It turns out that the twelve obvious points on the curve
Xa=Q can be partitioned in two disjoint packets of six points, each lying on a smooth conic.
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More precisely,

(�3; 0), (�2;�2), (�2;�1), (�1;�1), (�1; 0),
and (0;�2), lie on the conic

(3.1) 2x2 + 2xy � y2 + 8x+ y + 6 = 0;

and the complement (�3;�2), (�3;�1), (�2; 0), (�1;�2),
(0;�1), and (0; 0), lie on the conic 2x2�2xy+3y2+4x+3y =
0. The real solutions of this latter conic form an ellipse in
the plane, and will not be of interest in this discussion. The
real solutions of the �rst conic form a hyperbola, and we
�nd on it in�nitely many integral points.
Fix a. Then the intersection of the curve Xa and the

conic (3.1) contains the six obvious points listed above plus
(at most) two more points (x; y) given by

2x = 3(y � 3)=4� a;

and

(3.2) (y + 1)2 � 56(y + 1)a+ 16a2 � 16 = 0:

The picture on the right describes the case a = 1=4, where
the intersection of the curve Xa=1=4 and the conic (3.1) con-
tains only one additional point, (4; 14), because the two
curves share a common tangent line at the point (�2;�2).
The equations were obtained using Magma [3] by asking for the primary decomposition

of the ideal (0) in the a�ne algebra Q[x; y; a]=I, where I is generated by the equation of the

curve Xa and the equation of the conic (3.1). Note that substituting a = 3(y�3)
4

� 2x in (3.2)
gives the relation 32(2x2 + 2xy � y2 + 8x+ y + 6) = 0.

Setting a = 3(y�3)
4

� 2x, we �nd that

x(x+ 1)(x+ 2)(x+ 3)� ay(y + 1)(y + 2) =

(�1=4)(2x2 + 2xy � y2 + 8x+ y + 6)(2x2 � 2xy + 3y2 + 4x+ 3y):

Therefore, any point (x; y) on the conic (3.1) lies on the curve Xa with a = 3(y�3)
4

� 2x.

Lemma 3.3. If (x; y) is an integer point on the conic (3.1), then a = 3(y�3)
4

� 2x is either

an integer if y is odd, or its denominator is equal to 4 if y is even.

Proof. Clearly, if x and y are integers, then a = b=2k for some k = 0; 1 or 2 and odd integer
b; and k = 2 when y is even. Suppose then that y = 2t + 1 for some integer t. Then it
follows from (3.1) that

x(x+ y) + 4x+ 3 + y(1� y)=2 = 0:

Since x(x+ y) + 4x is always even, we �nd that (1� y)=2 must be odd. Hence, y = 4s� 1
for some integer s, and (y � 3)=4 is an integer. �
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Let us write the conic (3.1) in standard form:

2x2 + 2xy � y2 + 8x+ y + 6 = 3x2 + 9x� (y � x)2 + (y � x) + 6
= 3(x+ 3=2)2 � (y � x� 1=2)2 � 1=2:

Thus, setting X = 2y � 2x� 1, and Y := 2x+ 3, we �nd that

(3.4) X2 � 3Y 2 = �2:
In particular, any integer point on the conic (3.1) produces an integer solution to X2�3Y 2 =
�2.
The integer solutions to (3.4) are well-understood. First, we have an obvious solution

(1; 1). The fundamental solutions (X; Y ) of the Pell equation X2�3Y 2 = 1 are (�2;�1). Set
� := 2+

p
3. All solutions ofX2�3Y 2 = �2 are of the form (X; Y ) withX+Y

p
3 = (1+

p
3)�i

for some i (see, e.g., [8, Theorem 3, A] and [20]).

Proposition 3.5. When c = 1 or 4, Equation (1.3) has an in�nite family of solutions

(x; y; b) in positive integers with y � x + 2. More precisely, for each integer i � 2, given
Xi + Yi

p
3 := (1 +

p
3)�i, consider the point (xi; yi) on the conic (3.1) with xi := (Yi � 3)=2

and yi := xi + (Xi + 1)=2. If i is odd, then (xi; yi; bi :=
3(yi�3)

4
� 2xi; c = 1) is a solution to

(1.3) in positive integers. If i is even, then (xi; yi; bi := 3(yi � 3) � 8xi; c = 4) is a solution

to (1.3) in positive integers.

Proof. Let us note �rst that xi and yi are always integers. For this, it su�ces to note that
Xi and Yi are always odd. This is indeed the case because if X + Y

p
3 = (m+ n

p
3)� with

m and n odd, then X and Y are always odd.
Since the coe�cients of � are positive, it is clear that Xi; Yi > 0. From the formula

yi = xi + (Xi + 1)=2, we �nd that yi > xi + 2.
To conclude the proof, it remains to show, in view of Lemma 3.3, that i is odd if and only

if yi is odd. It is clear that yi is odd if and only if Xi + Yi is divisible by 4. Computing now
Xi + Yi

p
3 = (m + n

p
3)�2, we �nd that Xi = 7m + 12n, and Yi = 4m + 7n. In particular,

Xi + Yi � m + n mod 4. When i = 2, and m = n = 1, we �nd that m + n � 2 mod 4.
When i = 3, and (m;n) = (5; 3), we �nd that m+ n � 4 mod 4, as desired. �

3.6 Our initial small computer search for solutions (x; y; b) to (1.3) when c = 1 and c = 4
found the �rst four solutions in the in�nite sequences given in 3.5 (listed in the table below),
and produced the sequence 1; 14; 195; 2716 for b when c = 1. This was recognized as Sequence
A007655 in The Online Encyclopedia of Integer Sequences [16], and clearly indicated some
possible structure in the set of solutions. The analogue sequence for c = 4 is A028230.

c = 1 c = 4

(19; 55; 1) (4; 14; 1)

(284; 779; 14) (75; 208; 15)

(3975; 10863; 195) (1064; 2910; 209)

(55384; 151315; 2716) (14839; 40544; 2911)
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A much larger computer search found all solutions to (1.3) with c = 1 or c = 4 and 0 �
x � 109 and y � x + 2. When c = 1, only three such solutions, (2; 4; 10), (8; 10; 6),
and (152; 340; 14), do not belong to the in�nite family in Proposition 3.5. When c = 4,
we found six exceptional solutions not belonging to the in�nite family in Proposition 3.5:
(12; 14; 39), (39; 63; 41), (44; 46; 165), (74; 110; 95), (130; 208; 131), and (5642; 7903; 8217).
These computations support Conjecture 1.2 (b). We now show that Xiang's Conjecture 1.1
follows from Conjecture 1.2.

Proposition 3.7. Conjecture 1.2 implies Conjecture 1.1.

Proof. Conjecture 1.1 follows if we can show that for every non-zero positive integer c, there
are only �nitely many pairs (x; y) of positive integers satisfying y � x+2 and such that the

denominators of both x(x+1)
y

and x(x+1)(x+2)(x+3)
y(y+1)(y+2)

divide c. Conjecture 1.2 (a) in this article

immediately implies that for every non-zero positive integer c with c 6= 1; 4, there are only
�nitely many pairs (x; y) of positive integers satisfying y � x+2 such that the denominator

of x(x+1)(x+2)(x+3)
y(y+1)(y+2)

divides c.

Assume now that c = 1 or 4. Recall that the parametric solutions (xn; yn; bn) of the
equation

cx(x+ 1)(x+ 2)(x+ 3) = by(y + 1)(y + 2)

found in Proposition 3.5 lie on the conic (3.1), which we can rewrite as

2(x+ 1)(x+ 3)� y(y � 2x� 1) = 0:

Hence, setting zn := yn� 2xn� 1, we have ynzn = 2(xn+1)(xn+3). Using this identity, we
get

2xn(xn + 1)

yn
= zn � 6(xn + 1)

yn
:

For n positive, one checks that 0 < bn < xn, so that

8

3
(xn + 1) < yn < 3(xn + 1):

Hence, 6(xn + 1)=yn is not an integer and, therefore, xn(xn + 1)=yn is not an integer. Con-
jecture 1.2 (b) implies that there are only �nitely many solutions (x; y) with y � x + 2 in
addition to the parametric solutions, as desired. �

Remark 3.8 Let us return to the sequence introduced in 3.6 when c = 4, namely, 1; 15,
209; 2911; : : : (A028230 in [16]). This sequence is recognized as a subsequence of a larger
sequence 1; 4; 15, 56; 209; 780, 2911; : : : (A001353 in [16]). In the entry for A001353 in [16],
Jonathan Vos Post asks whether this sequence ever contains a prime. We note in this remark
a factorization of the elements of this sequence that shows that the elements of A001353 are
never prime.
Recall that � := 2+

p
3. Let fsng denote the sequence A001353, and let us de�ne sn to be

the coe�cient of
p
3 in the element �n. De�ne Xn + Yn

p
3 := (1 +

p
3)�n. We now consider

the equality

�2n+1 = (Xn + Yn
p
3)2�(1 +

p
3)�2



INTEGRAL POINTS ON VARIABLE SEPARATED CURVES (DRAFT) 11

and compare the
p
3-terms. It is easy to check that �(1 +

p
3)�2 = 1=2, so we obtain the

equality s2n+1 = XnYn. Since fXng and fYng are increasing sequences, we �nd that s2n+1 is
never prime.
We now o�er a factorization of sn of the following form. Set xn := (Yn � 3)=2 and

yn := (Xn+Yn)=2� 1. This change of variables already appears in 3.5, and we used already
in 3.5 the fact that xn and yn are integers. It is very easy to check that sn+1 = yn + 1. The
point (xn; yn) lies on the conic (3.1), which we rewrite in the following form:

2(x+ 1)(x+ 2) = (y + 1)(y � 2x� 2):

It follows that

sn+1 = yn + 1 =
2(xn + 1)(xn + 2)

yn � 2xn � 2
:

We leave it to the reader to check that yn� 2xn� 2 < xn, so that the above factorization of
sn+1 shows that indeed sn+1 is always composite.

Remark 3.9 Fix integers 0 < � < � < 
, and 0 < m < n. Consider the following
diophantine equation in the variables (x; y; b; c):

(3.10) cx(x+ �)(x+ �)(x+ 
) = by(y +m)(y + n):

The equation has 12 obvious integer solutions (x; y; b; c), which occur for all values of b; c,
namely:

(x; y; b; c) with x 2 f0;��;��;�
g and y 2 f0;�m;�ng.
Let us now impose a new constraint: that the following set of six points (�
; 0), (��;�n),
(��;�m), (��;�m), (��; 0), (0;�n) all lie on a conic. Note that no three of the last �ve
points on this list can be colinear.

Lemma 3.11. The six points above all lie on the same conic C if and only if


 = � + �
m

n�m
:

Proof. We write down the conic C which contains the last �ve points in the list by computing
the determinant of the 6� 6-matrix whose �rst row is

(x2; xy; y2; x; y; 1)

and whose subsequent �ve rows are of the form (a2; ab; b2; a; b; 1) for each of the �ve given
points (a; b). It turns out that the �rst point (�
; 0) belongs to C if and only if 
 =
� + � m

n�m
. �

Note that the above condition on 
 is compatible with the hypothesis that 
 > �. It is
possible to �nd examples of Equation (3.10) which do not have any obvious involution or
parametric solutions with c constant (contrary to Equation (1.3)), but where we can �nd
several values of c where Equation (3.10) has in�nitely many solutions with y > x+ 
. For
instance, when c 2 f1; 5; 25g, then there are in�nitely many solutions (x; y; b) in positive
integers with y > x+ 6 to the equation

cx(x+ 3)(x+ 4)(x+ 6) = by(y + 2)(y + 5):
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4. Variable separated equations

At the cost of slightly weakening Conjecture 1.2, we may state the following uni�ed con-
jecture which does not distinguish anymore the cases where c = 1 and c = 4 in Conjecture
1.2: Fix a positive integer c. Let � < 1=3. The equation

cx(x+ 1)(x+ 2)(x+ 3) = by(y + 1)(y + 2)

has only �nitely many solutions in positive integers (x; y; b) with y � x4=3�� and gcd(b; c) = 1.
This conjecture is implied by Conjecture 1.2. Indeed, the positive integer solutions (x; y; b; c)
found in Proposition 3.5 when c = 1 or c = 4 all lie on a hyperbola. It follows that for such
solutions limx!1

log(y)
log(x)

= 1. Thus, for any � > 0, Conjecture 1.2 (b) predicts only �nitely

many positive integer solutions with log(y)
log(x)

� 1 + �.

Our goal in this section is to provide evidence that a similar conjecture might be true for
a much wider class of equations f(x) = bg(y). Let us �rst give the proofs of Propositions
1.4 and 1.10 stated in the introduction. Recall that D := deg(f)= deg(g).

4.1 Proof of Proposition 1.4. Assume that there exists an in�nite sequence f(xn; yn; bn)g
of distinct solutions in positive integers to the equation f(x) = bg(y) such that for all n,
yn � xD+�

n . Clearly, limn!1 xn =1. We have for all n su�ciently large:

bn =
jf(xn)j
jg(yn)j �

jf(xn)j
jg(xD+�

n )j :

Since limx!1 f(x)=g(xD+�) = 0, we �nd a contradiction with the fact that bn � 1 for all
n. To compute the set of solutions, we �rst �nd X such that f(X)=g(XD+�) < 1. Then for
each x � X and for each y such that g(y) � f(x), we check whether the ratio f(x)=g(y) is
an integer. �

4.2 Proof of Proposition 1.10. Assume that there exists an in�nite sequence f(xn; yn; bn)g
of solutions in positive integers to the equation f(x) = bg(y) such that for all n, yn > xDn .

As before, limn!1 xn =1. We have for all n su�ciently large: bn = jf(xn)j
jg(yn)j

� jf(xn)j
jg(xDn )j

. Since

limx!1 f(x)=g(xD) exists, we �nd that the set fbn; n 2 Ng is bounded. There are thus only
�nitely many curves of the form f(x) = bng(y) to consider, and by hypothesis each has a
smooth projective model with positive genus. Thus we obtain a contradiction by apply-
ing Siegel's Theorem to each such curve to obtain that the union of their integer points is
�nite. �

Recall that when F is any �eld and g(t) 2 F [t], then the radical rad(g) is de�ned to be
the product of the distinct irreducible factors of g. When m > 1 is an integer, the radical

rad(m) denotes the product of the distinct primes which dividem. The following proposition
assumes that the abc-conjecture of Masser and Oesterl�e holds ([10, p. 24] or [15, Conjecture
3]).

Proposition 4.3. Assume that the abc-Conjecture is true. Let f(x) 2 Z[x] be a polynomial

without multiple roots. Let g(y) 2 Z[y] be a polynomial with at least one multiple root. Let
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� > 0. Then the equation f(x) = bg(y) in the variables (x; y; b) has only �nitely many

solutions (x0; y0; b0) in positive integers with

log(y0)

log(x0)
>

1

deg(g)� deg(rad(g))
+ �:

In particular, if
deg(f)
deg(g)

� 1
deg(g)�deg(rad(g))

> 0, then Conjecture 4.4 holds for f and g with

� < deg(f)
deg(g)

� 1
deg(g)�deg(rad(g))

. This is the case for instance when deg(f) > deg(g), or when

deg(f) � 3 and g(y) = ys.

Proof. Let � > 0. Under our assumptions that the abc-Conjecture is true and that f(x) does
not have repeated roots, we �nd in [6, Corollary 1 to Theorem 5], that

rad(f(x0)) :=
Y

primes pjf(x0)

p � jx0jdeg(f)�1��;

where the constant implied in the notation >> depends on � and f . Consider now a solution
(x0; y0; b0) in positive integers of the equation f(x) = bg(y). Then

rad(f(x0)) = rad(b0g(y0)) � b0rad(g(y0)) = b0rad(rad(g)(y0)) � f(x0)

g(y0)
rad(g)(y0) =

f(x0)
g

rad(g)
(y0)

:

It follows that there exists a constant c0 depending on � such that, for all x0; y0 su�ciently
large,

x
deg(f)�1��
0 � c0

x
deg(f)
0

y
deg(g)�deg(rad(g))
0

:

Let d := deg(g)� deg(rad(g)) and recall that by hypothesis, d > 0. Thus, we can write:

log(y0)

log(x0)
� 1

d
+
�

d
+

log(c0)

log(x0)d
:

It follows that if we choose � > 0, we can �nd � such that �
d
� 1

2
�, and we obtain that for

all x0 large enough (depending of �), we have log(c0)
log(x0)d

� 1
2
�. If follows that for all solutions

(x0; y0; b0) with x0 and y0 large enough, we have the desired inequality

log(y0)

log(x0)
� 1

d
+ �:

Clearly, for a �xed x0, the equation f(x0) = bg(y) has only �nitely many integer solutions

(y0; b0). For a �xed y0,
log(y0)
log(x0)

� 1
d
+ � as soon as x0 is large enough. It follows that there

can be only �nitely many solutions (x0; y0; b0) with
log(y0)
log(x0)

> 1
d
+ �, as desired. �

Proposition 4.3 motivates the following conjecture.
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Conjecture 4.4. Let f(x) 2 Z[x] and g(y) 2 Z[y] be non-constant integer polynomials, and

set D := deg(f)= deg(g). There exists � > 0, depending on f and g, such that the equation

f(x) = bg(y) has only �nitely many solutions (x0; y0; b0) in positive integers such that x0 > 1,
such that f(x) � b0g(y) is geometrically irreducible and the genus of the smooth projective

curve associated to the plane curve given by the equation f(x) = b0g(y) is positive, and such

that y0 > xD��0 .

Example 4.5 Consider a conic with in�nitely many integral points, given by an equation
x2 � dy2 = �e, with d; e 2 N. Let f(x) 2 Z[x], with deg(f) � 3. Assume that f(x)
is divisible by (x2 + e) in Z[x], and write f(x) = (x2 + e)h(x) with deg(h) > 0. Then the

equation f(x) = by2 has in�nitely many solutions (x; y; b) in positive integers with y > x=
p
d.

Indeed, for each solution (x0; y0) of the equation x2 � dy2 = �e, we get the equality
f(x0) = dh(x0)y

2
0:

In this example, deg(f) � 3 and deg(g) = 2, and we �nd that for the statement of Conjecture
4.4 to hold for �, we need

deg(f)

deg(g)
� � > 1:

Proposition 4.3 shows that if the abc-Conjecture holds, then Conjecture 4.4 is true with
� < deg(f)

deg(g)
� 1. Thus the bound for � provided in 4.3 when g(y) = y2 is sharp.

Remark 4.6 Fix f(x) 2 Z[x] of positive degree. Given g0(x) = x2, it follows from 4.3 under
the abc-conjecture that Conjecture 4.4 holds for the pair f(x) and g0(x) for � < 1=2. We
note here that the same statement does not hold for all quadratic polynomials g(x). For
instance, in 5.3, we present an example where g1(x) = x(x+1) and Conjecture 4.4 can hold
for the pair f(x) and g1(x) only when � < 1=6.

Remark 4.7 Consider the surface X=Q in the (x; y; b)-a�ne space given by the equation
f(x) = bg(y). We note here that some additional assumption, such as one of the form
log(y)
log(x)

> �, seems essential in order to obtain a non-trivial �niteness statement for the number

of positive integer solutions to f(x) = bg(y). For instance, one might ask, in the spirit of the
Lang-Vojta conjecture ([9, F.5.3.6]), whether there exist �nitely many irreducible algebraic
curves on the surface X such that the complement of the union of these curves in X contains
only �nitely many integer points. This question is easily shown to have a negative answer
when f(x) = xh(x) since in that case, for each integer e > 0, the parametric curve Ce given
by (x(y); y; b(y)) with

x(y) := eg(y)
b(y) := eh(eg(y))

lies on the surfaceX, and contains in�nitely many integer points. Note that when in addition
h(0) 6= 0, then the curves Ce and Ce0 do not intersect on X when e 6= e0.
Conjecture 4.4 predicts the existence of � > 0 such that there exists only �nitely many

positive solutions (x; y; b) with log(y)
log(x)

> deg(f)
deg(g)

� �. Assuming this conjecture, we can then ask

a more general question:
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What is the largest value of � > 0 such that there exists only �nitely many positive solutions

(x; y; b) with log(y)
log(x)

> deg(f)
deg(g)

� � lying outside of a �nite set S of curves on the surface X.

In the example where f(x) = xh(x), the existence of the in�nitely many curves Ce each
containing in�nitely many positive solutions shows that the answer to the more general
question can only produce in this case an � with � < deg(f)

deg(g)
� 1

deg(g)
.

Let us now slightly modify Example 4.5 so that we can use an explicit example in [7].
Consider the surface f(x) = by2 in the (x; y; b)-space with f(x) := (x2+x+1)h(x). Consider
the curve Ck in the surfaceX obtained by intersectingX with the surface given by x2+x+1 =
ky2. It is known [7] that if k = (q2 + 3)=4 for some integer q, then the conic Ck contains
in�nitely many integral points with positive coordinates. It is easy to check that the conics
Ck and Ck0 have no integer solutions in common when k 6= k0.
For each point (x0; y0) on Ck having positive coordinates, we can write f(x0) = h(x0)ky

2
0,

so (x0; y0; b0 := h(x0)k) is an integer point on the surface X such that log(y)
log(x)

> 1 � log(b0)
2 log(x0)

.

Thus the existence of the in�nitely many curves Ck each containing in�nitely many positive
solutions shows that the answer to the more general question can only produce in this case
an � with � < deg(f)

deg(g)
� 1

deg(g)�1
.

5. Upper bounds for �

As mentioned in 1.11, an immediate type of constraint on the possible �'s in Conjecture
4.4 comes from the existence of parametric solutions, where a parametric solution of the
equation f(x) = bg(y) is a triple x(t); y(t); b(t) of polynomials in Z[t] with x(t) and b(t) of
positive degree such that f(x(t)) = b(t)g(y(t)) in Z[t]. We start by providing a proof for
Proposition 1.13.

5.1 Proof of Proposition 1.13. The �rst inequality follows from (1.12). It is clear that

the function y(t)degt(x)

x(t)degt(y)
has a �nite limit when t tends to in�nity. Thus, given any � > 0, there

exists a positive integer t0 such that for all t1 > t0,
��� log(jy(t1)j)
log(jx(t1)j) �

degt(y)

degt(x)

��� < �:

By hypothesis, the values of the polynomials x(t); y(t), and b(t), are integers when t is an
integer. If Conjecture 4.4 holds for �, we see that there exists an integer t2 > t0 such that

degt(y)

degt(x)
� � <

log(jy(t2)j)
log(jx(t2)j) �

deg(f)

deg(g)
� �:

Since this is true for any � > 0, the result follows. �

Remark 5.2 The hypothesis in Proposition 1.13 that the polynomials x(t); y(t), and b(t),
belong to Int(Z) is needed in its proof. Indeed, consider f(x) = x(x2 + x + 1)(x2 + x + 3)
and g(y) = y(y + 1). Then x(t) := t, y(t) := 1

2
(t2 + t + 1), and b(t) := 4t, is a solution to

f(x) = bg(y) in Q[t], and y(t) never takes integer values. The existence of this solution does
not imply an upperbound on the � for which Conjecture 4.4 holds for f and g. (A computation
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with Magma shows that there are no other solutions (x(t); y(t); b(t)) of f(x) = bg(y) in Q[t]
with degt(x) = 1, degt(y) = 2 and positive leading coe�cients.)

Example 5.3 Consider the equation

(5.4) x(x+ 1)(x+ 2) = ty(y + 1):

Let P := (0; 0) and Q := (�2; 0). One may wonder whether the Mordell-Weil group of the
elliptic curve over Q(t) de�ned by (5.4) is generated by P and Q. The integral solution
�3P � 3Q = (x(t); y(t)), with

(5.5)
x(t) = (t2 � t� 1)(t+ 1)
y(t) = (t2 � t� 1)(t2 + t� 1);

is of interest since degt(y)
degt(x)

= 4=3, while deg(f)
deg(g)

= 3=2. If Conjecture 4.4 holds for some � > 0,

then Proposition 5.1 implies that � � 3=2� 4=3 = 1=6.
The sets of integer solutions of (5.4) when t = 3 is considered in [1] (see also [21, Theorem

A23]). The problem of �nding integer solutions to (5.4) when t = 1 was posed by E. Lionnet
and solved in ([14], or see [5, page 681]). The full set of integer solutions of (5.4) when t = 1
is determined in [13].

It is possible to obtain in some cases an upper bound for degt(y)
degt(x)

smaller than deg(f)
deg(g)

using

the ABC-theorem for polynomials (see, e.g., [9, F.3.6] or [10, page 19]). This theorem, also
called the Mason-Stothers Theorem ([11] and [24, 1.1]), states that:
Let a(t), b(t), and c(t) be relatively prime polynomials over a �eld F such that a + b = c

and such that not all of them have vanishing derivative. Then

maxfdeg(a); deg(b); deg(c)g � deg(rad(abc))� 1:

When char(F ) = 0, we �nd that if su�ces to assume that a(t), b(t), and c(t) are relatively
prime polynomials and not all constant.
We use the ABC-theorem and a key lemma of Belyi to obtain the following theorem, whose

proof follows ideas found in [6].

Theorem 5.6. Let F (x; y) 2 Q[x; y] be a homogeneous polynomial. Let m(t); n(t) 2 Q[t] be
two coprime polynomials, not both constant. Then

degt(rad(F (m;n)))� 1 � (deg(rad(F ))� 2)max(degt(m); degt(n)):

Proof. Belyi's Lemma in the form given in [6, Lemma 1] is used to show the existence
of three coprime homogeneous polynomials a(x; y); b(x; y), and c(x; y) in Z[x; y] of degree
D > 0 such that a + b = c, and such that rad(abc) has degree D + 2 and is divisible by
rad(F ). Since m(t) and n(t) are coprime, and so are a(x; y) and b(x; y), we �nd that a(m;n)
and b(m;n) are coprime in Q[t]. Since m(t) and n(t) are not both constant, we �nd that
a(m;n) and b(m;n) cannot be both constant. The ABC-Theorem can then be applied to
a(m;n) + b(m;n) = c(m;n) to obtain the following inequality:

Dmax(degt(m); degt(n)) + 1 � degt(rad(a(m;n)b(m;n)c(m;n))):
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Write rad(abc) = rad(F )(x; y)h(x; y) for some h(x; y) 2 Q[x; y]. Then

degt(rad(a(m;n)b(m;n)c(m;n))) = degt(rad(rad(abc)(m;n)))

= degt(rad(rad(F )(m;n)h(m;n))))

� degt(rad(F (m;n))) + deg(h)max(degt(m); degt(n))

Putting these inequalities together, along with the expression deg(h) = (D+2)�deg(rad(F )),
concludes the proof. �

Corollary 5.7. Let f(x) 2 Q[x]. Let m(t) 2 Q[t] be of positive degree. Then

degt(rad(f(m))) � 1 + degt(m)(deg(rad(f))� 1):

Proof. Apply Theorem 5.6 to F (x; y) := ydeg(f)+1f(x=y), and to the polynomials m(t) and
n(t) = 1. �

Note that the inequality in the corollary becomes an equality when 0 is a simple root of
f and m(t) = ts.

Theorem 5.8. Let f(x) 2 Q[x] and g(y) 2 Q[y]. Let (x0(t); y0(t); b0(t)) be a solution of the

equation f(x) = bg(y) with x0(t); y0(t); b0(t) 2 C[t] and x0(t) not constant. Then

(5.9) (deg(g)� deg(rad(g))) degt(y0) � (deg(f)� deg(rad(f)) + 1) degt(x0)� 1;

and

(5.10) (deg(rad(g))� 1) degt(y0) � deg(rad(f)) degt(x0)� 1:

In particular,

(a) If g has at least one multiple root, then

degt(y0)

degt(x0)
<

deg(f)� deg(rad(f)) + 1

deg(g)� deg(rad(g))
:

If in addition deg(f) > deg(g) and f has no multiple roots, then
degt(y0)
degt(x0)

< 1
deg(g)�deg(rad(g))

<
deg(f)
deg(g)

:

(b) If deg(rad(g)) > 1, then

degt(y0)

degt(x0)
<

deg(rad(f))

deg(rad(g))� 1
:

If in addition f has at least one multiple root, g has no multiple root, and deg(f) < deg(g),

then
degt(y0)
degt(x0)

< deg(f)�1
deg(g)�1

< deg(f)
deg(g)

: Similarly, if in addition f(x) = xr and deg(f) > deg(g),

then
degt(y0)
degt(x0)

< 1
deg(rad(g))�1

< deg(f)
deg(g)

:
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Proof. We apply Corollary 5.7 to f(x) and x0(t), to obtain the �rst inequality below:

1 + degt(x0)(deg(rad(f))� 1) � degt(rad(f(x0)))

= degt(rad(b0g(y0))

� degt(b0) + degt(rad(g(y0))

= degt(b0) + degt(rad(rad(g)(y0))

� degt(b0) + deg(rad(g)) degt(y0)

= deg(f) degt(x0)� deg(g) degt(y0) + deg(rad(g)) degt(y0);

and (5.9) follows. To prove (5.10), we apply Corollary 5.7 to g(y) and y0(t) to obtain the
�rst inequality below:

(deg(rad(g))� 1) degt(y0) � degt(rad(g(y0)))� 1

� degt(rad(b0g(y0))� 1

= degt(rad(f(x0))� 1

� deg(rad(f)) degt(x0)� 1: �

We can slightly improve Theorem 5.8, in the special case where xr = bg(y) and r � deg(g),
using the main result of [12].

Proposition 5.11. Let F be a �eld of characteristic 0. Let f(x) = xr, r > 1, and g(y) 2
F [y]. Assume that the equation xr = g(y) de�nes a smooth projective geometrically connected

curve over F of positive genus. Then there exists � > 0 depending on deg(f) and deg(g)
only such that, given any solution (x0(t); y0(t); b0(t)) to xr = bg(y) in polynomials in F [t]

with x0(t) and b0(t) not constant, then
degt(y0)
degt(x0)

< deg(f)
deg(g)

� �.

Proof. Given a solution (x0(t); y0(t); b0(t)), we let g(y) := b0(t)g(y) 2 F [t][y]. We apply to
the equation xr = g(y) the main result of [12, Theorem on page 168] to obtain the following
inequality:

(5.12) degt(y0) � 78degt(b0) + 6 � 79degt(b0):

In the notation of [12, page 168] we apply the Theorem to the case where K = F (t) with
gK = 0, and where S consists only in the place corresponding to the point at in�nity, with
local ring F [1=t](1=t), so that OS = F [t]. The proposition then follows from the fact that (c)
implies (a) in Remark 5.13. �

Remark 5.13 Let F be any �eld. Let f(x) and g(x) be non-constant polynomials in F [x].
Then the following statements are equivalent:

(a) There exists � > 0 such that degt(y0)
degt(x0)

< deg(f)
deg(g)

� � for any solution (x0(t); y0(t); b0(t)) to

the equation f(x) = bg(y) in polynomials in F [t] with x0(t) and b0(t) non-constant.

(b) There exists C1 > 0 such that degt(x0)
degt(b0)

< C1 for any solution (x0(t); y0(t); b0(t)) to the

equation f(x) = bg(y) in polynomials in F [t] with x0(t) and b0(t) non-constant.

(c) There exists C2 > 0 such that degt(y0)
degt(b0)

< C2 for any solution (x0(t); y0(t); b0(t)) to the

equation f(x) = bg(y) in polynomials in F [t] with x0(t) and b0(t) non-constant.
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The equivalences follow from the equality

deg(f) degt(x0) = degt(b0) + deg(g) degt(y0):

The equivalence of (b) and (c) is immediate. To show that (c) implies (a), we note that

degt(y0)

degt(x0)
=

deg(f)

deg(g)
� degt(b0)

deg(g) degt(x0)
<

deg(f)

deg(g)
� degt(y0)

C2 deg(g) degt(x0)
;

and we can take

� =
deg(f)

(C2 deg(g) + 1) deg(g)
:

Assuming (a), we �nd that degt(x0)
degt(b0)

< 1
� deg(g)

.

6. Distribution of the integer solutions

We report in this section on some data on the solutions (x; y; b; c) in positive integers with
gcd(b; c) = 1 to the equation

(6.1) cx(x+ 1)(x+ 2)(x+ 3) = by(y + 1):

In 6.6, we consider all positive integer solutions (x; y; b; c) to Equation 6.1 that we found,

about 369;000 of them, with c 2 [1; 300], x 2 [1; 109], gcd(b; c) = 1, b 6= 4c and log(y)
log(x)

�
1:33333. We remove from this set of solutions all solutions which can be explained `geo-
metrically', that is, solutions which we found to belong to a parametric family. (Finding
parametric families of solutions is not immediate, and we explain below how some of these
families were found.) We introduce then the following counting function for this set of
`not-geometrically explained' solutions:

N(B) := Number of solutions (x; y; b; c) with gcd(b; c) = 1; b 6= 4c;
log(y)
log(x)

2 [4=3; B]; x 2 [1; 109]; and c 2 [1; 300]:

The data shows in 6.7 a surprisingly good �t between N(B) and a function of the form
�� �e�
B, where �; �; 
 are positive constants.

6.2 For each positive integer c, let fc(x) := cx(x+1)(x+2)(x+3). If Conjecture 4.4 holds,
then there exists �c such that the equation fc(x) = by(y+1) has only �nitely many solutions
(x0; y0; b0) in positive integers with b0 6= 4c and y0 � xD��c0 .
A computer search found the complete list L = L7=4 of all 12730 solutions (x; y; b; c) to

Equation (6.1) in positive integers with c 2 [1; 300], b 6= 4c, x � 109, gcd(b; c) = 1, and
log(y)
log(x)

> 7=4. The parametric solution

(6.3) x(c) = 144c+ 2; y(c) = 24c(144c+ 5); b(c) = 36c+ 1;

has log(y)
log(x)

> 7=4 when c � 9. For 156 values of c when c 2 [9; 300], the solution (x; y; b; c)

with the largest x-coordinate for the given c among the solutions in L is the solution given
in the parametric family (6.3) above. We found only 232 solutions in L with x-coordinate
larger than the x-coordinate of the corresponding solution in the parametric family (6.3).
Our data supports the statement that Conjecture 4.4 holds for any fc with �c < 1=4.
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The equation (1.9) has some parametric solutions of interest with degt(y)
degt(x)

= 3=2:

x(t) y(t) b(t)

(t+ 1)(2t� 3) t(2t2 � t� 2) (2t+ 1)(2t� 3)

(t� 1)(2t+ 3) (t� 1)(t+ 1)(2t+ 1) (2t� 1)(2t+ 3)

Except for when t = 1; 2, these parameterizations produce solutions (x; y; b) with log(y)
log(x)

< 3=2,

and limt!1
log(y)
log(x)

= 3=2. If Conjecture 4.4 holds for fc(x) = by(y + 1) for some �c > 0, then

Proposition 1.13 implies that �c < 1=2.
We found a total of 36 solutions (x; y; b; c) in L with x > 106. We only found two values

of c with solutions with 108 < x < 109, when c = 39 and when c = 281:

x y b c log(y)= log(x)

169036273 2130028657415099 7018 39 1.86

554344548 2537086889346525 4122444 281 1.76

Remark 6.4 It would be of interest to determine the supremum of the set D of all fractions
degt(y)
degt(x)

where (x(t); y(t); b(t)) is a solution of the equation x(x+1)(x+2)(x+3) = by(y+1)

with polynomials in Q[t] and degt(x); degt(b) > 0. As noted in (1.12), D is bounded by
D = 2. We can show that f1

2
; 2
3
; n+2
n+3

; n 2 N; 1; 4
3
; 3
2
g is contained in D. We only provide

examples below to show that 1 and 4=3 belong to D.
First, note that using the solution (x(t); y(t); t) in (5.5), we obtain two solutions of Equa-

tion (1.9) with degt(y)
degt(x)

= 4
3
, namely

(6.5) (x(t); y(t); t(x(t) + 3)) and (x(t)� 1; y(t); t(x(t)� 1)):

A much less obvious solution (x(t); y(t); b(t)) to Equation (1.9) with polynomials in Q[t] and

with degt(y)
degt(x)

= 4
3
is as follows:

x = 1
54
(t� 6)(t2 + 8t+ 21);

y = 1
216

(t� 6)(t+ 3)(t2 + 5t� 12);

b = 4
729

(t2 � 4t� 3)(t2 + 8t+ 21):

This solution was obtained by carefully considering the solutions (x; y; b; c) in positive inte-

gers to cx(x + 1)(x + 2)(x + 3) = by(y + 1) with log(y)
log(x)

around 4=3. Using the changes of

variables t = 36s�3 or t = 108s+6, we obtain two solutions (x(s); y(s); b(s)) in integer poly-
nomials to the equation 27x(x+1)(x+2)(x+3) = by(y+1). Composing further the change
t = 36s� 3 with the change s = 27r + 5 produces the following solution (x(r); y(r); b(r)) in
integer polynomials to the original Equation (1.8) x(x+ 1)(x+ 2)(x+ 3) = by(y + 1):

x = (108r + 19)(157464r2 + 58644r + 5461);

y = 27(27r + 5)(108r + 19)(52488r2 + 19386r + 1789);

b = 16(1944r2 + 700r + 63)(157464r2 + 58644r + 5461):
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It is easy to write down solutions to Equation (1.9) with degt(y) = degt(x) = 1, such as
y(t) = t and x(t) 2 ft � 2; t � 1; t; 2t � 1; 2t; 3tg. We note that there are also at least eight
solutions with degt(y) = degt(x) = 2 which are not obtained by composition from solutions
with degt(y) = degt(x) = 1; one such solution has x(t) = 1

2
t(t+ 5) and y(t) = 1

2
t(t+ 3).

6.6 Data when log(y)
log(x)

� 1:33333.

A second computer search found the complete list L of all solutions (x; y; b; c) to Equation

(6.1) in positive integers with c 2 [1; 300], b 6= 4c, x � 109, gcd(b; c) = 1, and log(y)
log(x)

� 1:33333.

We present a histogram below of this data produced using Mathematica [26]. We partitioned
the interval [1:33333; 2] in intervals Id of length 0:001 and for each d counted the number of

solutions found with log(y)
log(x)

2 Id := [d; d+0:001). Thus in the histogram below, the horizontal

axis pertains to the quantity log(y)
log(x)

and the vertical axis corresponds to the number of solutions

found.

The parametric solutions to Equation (6.1) with c = 1 found in 6.2 explain the very tall

peak around log(y)
log(x)

= 1:47. Note that the histogram is truncated at height around 5000 and

that the very tall peak extends to about height 30;000. The histogram is also truncated on
the x-axis to log(y)

log(x)
� 2.

The histogram also shows a smaller sharp peak in the number of solutions around log(y)
log(x)

=

1:5. This peak is explained geometrically by the existence of the six parametric solutions
in 6.10 below. The smaller sharp peak around around log(y)

log(x)
= 4=3 is explained by the

parametric solutions in (6.5). The `bulge' in the number of solutions above the interval
[1:40; 1:46] is also explained by the existence of many other parametric solutions, as we
explain in 6.11. The very thin bulge above the interval [1:7; 2] is explained by the parametric
solutions described in (6.9).
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6.7 Remove now from the set L all possible positive integer solutions (x; y; b; c) which belong
to one of the parametric solutions generated by the solutions discussed in this section. We
present a histogram below of this data. We partitioned the interval [1:33333; 2] in intervals
Id of length 0:001 and for each d counted the number of solutions found with log(y)= log(x) 2
Id := [d; d+ 0:001). The blue graph on this histogram is the graph of the function h(B) :=
exp(�(B � 2) + �), with � = �12:2368 and � = �0:1092 obtained using a Mathematica
command to produce the exponential function that �ts best the data on this histogram when
t 2 [1:5002; 2].

6.8 We end this section by describing the parametric solutions that we found that explain
the bulge in the �rst histogram. Given any parametric solution (x(c); y(c); b(c); c), we can
use the involutions x 7! �x� 3 and y 7! �y� 1 if necessary to obtain a new solution where
the leading coe�cients of both x(c) and y(c) are positive. Consider then the set S of all
parametric solutions (x(c); y(c); b(c)) with degrees (1; 2; 1), and x(c) and y(c) having positive
leading coe�cients (such as (6.3)). Then the involution

I : (x(c); y(c); b(c)) 7�! (�x(�c)� 3; y(�c);�b(�c))

preserves this set of solutions. Let x(c) := a1c+a0, y(c) := c2c
2+c1c+c0, and b(c) := b1c+b0

be polynomials in Q[c] such that (x(c); y(c); b(c); c) is a solution with a1; c2 > 0 and b0 6= 0.
Since degc(x) = 1, we can �nd a new solution in Q[c] such that x(c) is monic. It turns out
that the set of all such solutions can be explicitly computed, and is given by the following
four solutions and their images under the involution I. In the tables of solutions below, we
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let z(300) := log(y(300))
log(x(300))

.

(6.9)

x(c) y(c) b(c) z(300)

c+ 2 c(c+5)
6

36c+ 144 1.68680

c+ 1 c(c+4)
3

9c+ 18 1.80866

c+ 1 c(c+3)
2

4c+ 16 1.87912

c� 1 c2 � 1 c+ 2 2.00117

Using Magma [3], one computes that the ideal in A := Q[a0; b0; b1; c0; c1; c2] generated by
the coe�cients of the polynomial cx(x+ 1)(x+ 2)(x+ 3)� by(y + 1) in A[c] has exactly 18
distinct minimal prime ideals. The 16 prime ideals which do not contain b0c2 are maximal.
Exactly half of these determine a coe�cient c2 which is non-negative.
To obtain solutions to Equation 6.1 in positive integers, we evaluate the above solutions

at integer values c0 such that y(c0) 2 Z. For instance, using the �rst solution above, for each
appropriate values of c0 we obtain the integer solution (x; y; b; c) given as

x = c0 + 2; y =
c0(c0 + 5)

6
; b =

36c0 + 144

gcd(c0; 144)
; c =

c0
gcd(c0; 144)

:

From this, we can write down explicit integer parametrizations of solutions. For instance,
by setting c0 = 144d in the above expression we obtain (6.3), and by setting c0 = 6d+1, we
obtain:

x = 6d+ 3; y = (6d+ 1)(d+ 1); b = 36(6d+ 5); c = 6d+ 1:

When c = 90; 96; 144; 150; 162, we found only eight solutions in positive integers to (6.1)
with x < 109 and log(y)= log(x) > 7=4, and all solutions that we found are obtained from
the above parametric solutions (6.9) and their images under I, specialized to the case where
c0 = b(0)d.

6.10 The following are solutions (x(c); y(c); b(c)) to Equation (6.1), with degrees (2; 3; 3).

x(c) y(c) b(c) z(300)

c2 + c� 3 (c+ 1)(c2 + c� 1) (c� 1)(c2 + c� 3) 1:50015

c2 + c� 2 (c+ 1)(c2 + c� 1) (c� 1)(c2 + c+ 1) 1:50015

9c2 + 3c� 3 (3c+ 1)(9c2 + 3c� 1) (3c� 1)(3c2 + c� 1) 1:50004

c2 � c� 3 c2(c� 2) (c+ 1)(c2 � c� 3) 1:49986

c2 � c� 2 c2(c� 2) (c+ 1)(c2 � c+ 1) 1:49986

9c2 � 3c� 3 9c2(3c� 2) (3c+ 1)(3c2 � c� 1) 1:49996

Consider the set of polynomial solutions (x(c); y(c); b(c)) to Equation (6.1) with degrees
(2; 3; 3), and x(c) and y(c) having positive leading coe�cients. The involution

I : (x(c); y(c); b(c)) 7�! (x(�c);�y(�c)� 1;�b(�c))
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preserves this set of solutions, and the last three solutions above are obtained from the �rst
three by this involution.
We note that the �rst solution above is such that b(0) = 3. It follows that for inte-

gers c0 divisible by 3, gcd(b(c0); c0) 6= 1. On the other hand, we may consider the new
solution (x(3c); y(3c); b(3c)=3), still with integer polynomials, which has the property that
gcd(b(c0)=3; c0) = 1 for all integer values of c0. The third solution above is obtained from
the �rst solution by this process.

6.11 The �rst two solutions in 6.10 are of the form (x � 1; y; b(x � 1)) and (x; y; b(x + 3))
where (x; y; b) := ((c�2)(c+1); c2(c�2); c+1) is a solution to the equation cx(x+1)(x+2) =
by(y + 1). We found three additional solutions to Equation (6.1) coming from this modi�ed
equation, listed below. Obviously, their images under the involution I are also solutions.

x(c) y(c) b(c) z(300)

2c2 + 5c+ 1 c(c+ 2)(2c+ 3) (2c+ 1)(x+ 3) 1:47131

c2 + 4c+ 2 c(c+2)(c+3)
2

4(c+ 2)(x+ 3) 1:43902

c2 + 4c+ 1 c(c+2)(c+3)
2

4(c+ 2)x 1:43902

We list below solutions to Equation (6.1) obtained from solutions to the equation cx(x+
1)(x+ 3) = by(y + 1).

x(c) y(c) b(c) z(300)

3c2 + 7c+ 1 c(c+ 2)(3c+ 4) (3c+ 1)(x+ 2) 1:45606

c2 � 4 c(c�2)(c+1)
2

4(c+ 2)(x+ 1) 1:43895

c2 + 5c+ 3 c(c+2)(c+4)
3

9(c+ 3)(x+ 2) 1:40340

3c2 + 8c+ 2 c(c+2)(3c+5)
2

4(3c+ 2)(x+ 1) 1:40064

(c+ 3)(2c+ 1) c(c+2)(2c+5)
3

9(2c+ 3)(x+ 1) 1:38048

It is an easy matter for Magma to compute the parametric solutions (x; y; b) of degree
(2; 3; 1) to cx(x+ 1)(x+ 2) = by(y + 1) and to cx(x+ 1)(x+ 3) = by(y + 1), and each such
solution produces solutions to Equation (6.1). We list below a set of integral parametric
solutions to (6.1) which are not of that form. (We leave it to the reader to produce further
such solutions using the involution I, or a substitution c 7! �c when appropriate.)

x(c) y(c) b(c) z(300)

4(24c2 + 13c+ 1) c(8c+ 3)(24c+ 7) 8(4c+ 1)(6c+ 1)(12c+ 5) 1:40049

(4c+ 3)(8c+ 1) c(8c+ 3)(8c+ 5) 8(2c+ 1)(4c+ 1)(4c+ 3) 1:43004

6c2 � 11c+ 3 (c� 1)(2c� 1)(3c� 1) (2c� 3)(3c� 4)(6c� 5) 1:43233

2(12c2 + 11c+ 1) c(4c+ 3)(12c+ 5) 4(2c+ 1)(3c+ 2)(6c+ 1) 1:43854
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A priori, �nding all polynomial solutions (x; y; b) of degrees (2; 3; 3) is a problem with 7
variables (the coe�cients of x(c) and y(c)), and 6 relations (since the remainder of the division
of cf(x(c)) by y(c)(y(c)+1) has degree at most 5), and such a problem seem computationally
hard at this time. As we now explain, to �nd the four solutions listed above, we considered
instead a di�erent problem where the number of variables and the degrees of the relations
can be considerably decreased.
We may assume that c divides y(y + 1), otherwise we are reduced to an easier problem.

In fact, we may assume that c divides y by using the involution y 7! �y � 1 if necessary.
Given a solution (x; y; b) to cx(x+ 1)(x+ 2)(x+ 3) = by(y + 1) with degc(x) = 2, we claim
that one of the polynomials x, x+ 1, x+ 2, and x+ 3, must be irreducible in Q[c]. Indeed,
otherwise we �nd that � := a21 � 4a2a0 is a square in Z, and so are � � 4a2, � � 8a2, and
� � 12a2. Since we are looking for a solution with a2 6= 0, it follows that we would then
have a 4-term arithmetic progression in squares, and this was proved not to exist by Fermat
[23]. Hence, we may assume that x + i is irreducible, and that x + i divides y or y + 1 (if
this were not the case, x + i would divide b, and we would be reduced to an easier case).
Thus, either y(c) = tc(x(c) + i), and there are only 4 variables in total, a0, a1, a2 and t, or
y(c) + 1 = (x(c) + i)(tc + s), with 1 = (x(0) + i)s. This determines s, and leaves only 4
variables in total again, a0, a1, a2 and t.
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