An explicit construction of spherical designs

Ziqing Xiang

University of Georgia

Nov. 25, 2017
Definition 1

A finite subset $X \subseteq S^d$ is a **spherical t-design** provided that

$$
\frac{1}{|X|} \sum_{x \in X} f(x) = \frac{1}{\nu^d(S^d)} \int_{S^d} f \, d\nu^d
$$

for all $f \in \mathbb{R}[x_0, \ldots, x_d]_{\leq t}$, where ν^d is the spherical measure on S^d.
Spherical designs

Definition 1

A finite subset $X \subseteq S^d$ is a spherical t-design provided that

$$
\frac{1}{|X|} \sum_{x \in X} f(x) = \frac{1}{\nu^d(S^d)} \int_{S^d} f \ d \nu^d
$$

for all $f \in \mathbb{R}[x_0, \ldots, x_d]_{\leq t}$, where ν^d is the spherical measure on S^d.

Related concept:

- Weighted design ($X = (X, \mu_X)$).
- Rational design ($X \subseteq \mathbb{Q}^{d+1}$).
- Semidesign ($f \in \mathbb{R}[x_1, \ldots, x_d]_{\leq t}$).
- Rational-weighted rational semidesign.
Constructions of designs

- **Definition**: Delsarte-Goethals-Seidel (1977)
Constructions of designs

- **Definition**: Delsarte-Goethals-Seidel (1977)
- **Existence over** \mathbb{R}: Seymour-Zaslavsky (1984)
Constructions of designs

- **Definition**: Delsarte-Goethals-Seidel (1977)
- **Existence over** \mathbb{R}: Seymour-Zaslavsky (1984)
- **Existence of small spherical designs over** \mathbb{R}: Bondarenko-Radchenko-Viazovska (2013)

Problem 2: Are there rational spherical t-designs on S^d for all large d?
Constructions of designs

- **Definition**: Delsarte-Goethals-Seidel (1977)
- **Existence over** \(\mathbb{R} \): Seymour-Zaslavsky (1984)
- **Existence of small spherical designs over** \(\mathbb{R} \): Bondarenko-Radchenko-Viazovska (2013)
- **Computable spherical designs over** \(\mathbb{R} \): Wagner (1991), Rabau-Bajnok (1991)
Constructions of designs

- **Definition**: Delsarte-Goethals-Seidel (1977)
- **Existence over** \mathbb{R}: Seymour-Zaslavsky (1984)
- **Existence of small spherical designs over** \mathbb{R}: Bondarenko-Radchenko-Viazovska (2013)
- **Computable spherical designs over** \mathbb{R}: Wagner (1991), Rabau-Bajnok (1991)
- **Numerical spherical designs on** S^2 over \mathbb{R}: Chen-Frommer-Lang (2011)
Constructions of designs

- **Definition**: Delsarte-Goethals-Seidel (1977)
- **Existence over \(\mathbb{R} \)**: Seymour-Zaslavsky (1984)
- **Existence of small spherical designs over \(\mathbb{R} \)**: Bondarenko-Radchenko-Viazovska (2013)
- **Computable spherical designs over \(\mathbb{R} \)**: Wagner (1991), Rabau-Bajnok (1991)
- **Numerical spherical designs on \(S^2 \) over \(\mathbb{R} \)**: Chen-Frommer-Lang (2011)
- **Algorithm over \(\mathbb{Q}(\sqrt{p} : \text{prime } p) \)**: Cui-Xia-X. (2017)
Constructions of designs

- **Definition**: Delsarte-Goethals-Seidel (1977)
- **Existence over** \(\mathbb{R}\): Seymour-Zaslavsky (1984)
- **Existence of small spherical designs over** \(\mathbb{R}\): Bondarenko-Radchenko-Viazovska (2013)
- **Computable spherical designs over** \(\mathbb{R}\): Wagner (1991), Rabau-Bajnok (1991)
- **Numerical spherical designs on** \(S^2\) **over** \(\mathbb{R}\): Chen-Frommer-Lang (2011)
- **Algorithm over** \(\mathbb{Q}(\sqrt{p} : \text{prime } p)\): Cui-Xia-X. (2017)
- **Explicit interval design over** \(\mathbb{Q}^{\text{alg}} \cap \mathbb{R}\): Kuperberg (2005)
Constructions of designs

- **Definition**: Delsarte-Goethals-Seidel (1977)
- **Existence over** \mathbb{R}: Seymour-Zaslavsky (1984)
- **Existence of small spherical designs over** \mathbb{R}: Bondarenko-Radchenko-Viazovska (2013)
- **Computable spherical designs over** \mathbb{R}: Wagner (1991), Rabau-Bajnok (1991)
- **Numerical spherical designs on** S^2 over \mathbb{R}: Chen-Frommer-Lang (2011)
- **Algorithm over** $\mathbb{Q}(\sqrt{p} : \text{prime } p)$: Cui-Xia-X. (2017)
- **Explicit interval design over** $\mathbb{Q}^{\text{alg}} \cap \mathbb{R}$: Kuperberg (2005)
- **Explicit spherical design over** $\mathbb{Q}^{\text{ab}} \cap \mathbb{R}$: X. (2017)
Constructions of designs

- **Definition:** Delsarte-Goethals-Seidel (1977)
- **Existence over** \mathbb{R}: Seymour-Zaslavsky (1984)
- **Existence of small spherical designs over** \mathbb{R}: Bondarenko-Radchenko-Viazovska (2013)
- **Computable spherical designs over** \mathbb{R}: Wagner (1991), Rabau-Bajnok (1991)
- **Numerical spherical designs on** S^2 over \mathbb{R}: Chen-Frommer-Lang (2011)
- **Algorithm over** $\mathbb{Q}(\sqrt{p} : \text{prime } p)$: Cui-Xia-X. (2017)
- **Explicit interval design over** $\mathbb{Q}^{\text{alg}} \cap \mathbb{R}$: Kuperberg (2005)
- **Explicit spherical design over** $\mathbb{Q}^{\text{ab}} \cap \mathbb{R}$: X. (2017)

Problem 2

Are there **rational** spherical t-designs on S^d for all large d?
Structure of sphere and hemisphere as topological space

Let

\[H^d := \{(x_0, \ldots, x_d) \in \mathbb{R}^{d+1} : x_0 > 0\} \]

be the \(d\)-dimensional open hemisphere.
Structure of sphere and hemisphere as topological space

Let

\[H^d := \{(x_0, \ldots, x_d) \in \mathbb{R}^{d+1} : x_0 > 0\} \]

be the \(d\)-dimensional open hemisphere.

There exists a dominant open embedding of topological spaces

\[S^a \times H^b \rightarrow S^{a+b} \]

\[(x_0, \ldots, x_a) \times (y_0, \ldots, y_b) \mapsto (x_0 y_0, \ldots, x_a y_0, y_1 \ldots, y_b). \]
Structure of sphere and hemisphere as topological space

Let

\[H^d := \{ (x_0, \ldots, x_d) \in \mathbb{R}^{d+1} : x_0 > 0 \} \]

be the \(d \)-dimensional open hemisphere.

There exists a dominant open embedding of topological spaces

\[
S^a \times H^b \rightarrow S^{a+b}
\]

\[
(x_0, \ldots, x_a) \times (y_0, \ldots, y_b) \mapsto (x_0 y_0, \ldots, x_a y_0, y_1 \ldots, y_b).
\]

There exists an isomorphism of topological spaces

\[
H^a \times H^b \rightarrow H^{a+b}
\]

\[
(x_0, \ldots, x_a) \times (y_0, \ldots, y_b) \mapsto (x_0 y_0, \ldots, x_a y_0, y_1 \ldots, y_b).
\]
Structure of sphere and hemisphere as measure space

Let $\mathcal{H}^d_s := (H^d, \nu^d_s)$ for certain measure ν^d_s on H^d. (The Radon-Nikodym derivative of ν^d_s with respect to the spherical measure ν^d is the polynomial $x_0 \mapsto x^s_0$.)
Structure of sphere and hemisphere as measure space

Let $\mathcal{H}_s^d := (H^d, \nu^d_s)$ for certain measure ν^d_s on H^d. (The Radon-Nikodym derivative of ν^d_s with respect to the spherical measure ν^d is the polynomial $x_0 \mapsto x^s_0$.)

There exists a dominant open embedding of measure spaces

$$S^a \times \mathcal{H}_a^b \to S^{a+b},$$

and an isomorphism of measure spaces

$$\mathcal{H}_s^a \times \mathcal{H}_a^{b+s} \to \mathcal{H}_s^{a+b}.$$
Structure of sphere and hemisphere as measure space

Let $\mathcal{H}_s^d := (H^d, \nu_s^d)$ for certain measure ν_s^d on H^d. (The Radon-Nikodym derivative of ν_s^d with respect to the spherical measure ν^d is the polynomial $x_0 \mapsto x_0^s$.)

There exists a dominant open embedding of measure spaces

$$S^a \times \mathcal{H}_a^b \rightarrow S^{a+b},$$

and an isomorphism of measure spaces

$$\mathcal{H}_s^a \times \mathcal{H}_{a+s}^b \rightarrow \mathcal{H}_{s}^{a+b}.$$

Proposition 3

There exists a dominant open embedding of measure spaces

$$S^1 \times (\mathcal{H}_1^1 \times \cdots \times \mathcal{H}_{d-1}^1) \rightarrow S^d.$$
Sketch of an explicit construction of spherical designs

ERRS: explicit rational-weighted rational semidesign.

1. ERRS on \mathcal{H}_0^1.
2. ERRS on \mathcal{H}_1^1.
3. ERRS on \mathcal{H}_s^1.
4. ERRS on $\mathcal{H}_1^{d-1} \cong \mathcal{H}_1^1 \times \cdots \times \mathcal{H}_{d-1}^1$.
5. Explicit integer-weighted rational semidesign on \mathcal{H}_1^{d-1}.
6. Explicit design on S^1.
7. Explicit design on $S^d \sim S^1 \times \mathcal{H}_1^{d-1}$.
Step 1. Rational-weighted rational semidesign on \mathcal{H}_0^1

Theorem 4

Choose (b_i, a_i) in $H^1 \cap \mathbb{Q}^2$ such that

$$\left| a_i - \sin \left(\frac{-t + 2i + 1)\pi}{2t} \right) \right| < \frac{\pi 2^t}{2^t t^{2t}}.$$

Then, $X := \{(b_i, a_i)\}$ is the support of a unique rational-weighted rational $(t - 1)$-semidesign $X^1_0 = (X, \mu^1_0)$ on \mathcal{H}_0^1. Moreover,

$$\mu^1_0(b_i, a_i) = \sum_{\text{even } j=0}^{t-1} \frac{e_{t-j-1}(a_1, \ldots, \hat{a}_i, \ldots, a_t)}{(j + 1) \prod_{k \in [0, t-1] \setminus i} (a_k - a_i)},$$

where e_{t-j-1} is the $(t - j - 1)$-th elementary symmetric polynomial.
Step 2. Rational-weighted rational semidesign on \mathcal{H}_1^1

Theorem 5

Assume that n is an odd integer multiple of even integer t and $n > t^{t/2}$. Choose (b_i, a_i) in $H^1 \cap \mathbb{Q}^2$ such that

$$\left| a_i - \frac{-n + 1 + 2i}{n} \right| < \frac{t}{2n^4}.$$

Let $(b'_i, a'_i) := (b_j, a_j)$ where $j = \frac{(2i+1)n-t}{t}$. Then, $X := \{(b_i, a_i)\}$ is the support of a unique rational-weighted rational $(t - 1)$-semidesign $\mathcal{X}_0^1 = (X, \mu_0^1)$ on \mathcal{H}_0^1 such that $\mu_0^1(b_i, a_i) = 1$ for $(b_i, a_i) \notin \{(b'_i, a'_i)\}$. Moreover,

$$\mu_0^1(b'_i, a'_i) = 1 + \sum_{j=0}^{t-1} (-1)^j \frac{e_{t-j-1}(a'_1, \ldots, \hat{a}'_i, \ldots, a'_t)}{\prod_{k \in [0, t-1]} (a'_k - a'_i)} \epsilon_{n,j}$$

where $\epsilon_{n,j} := \frac{1}{n} \sum_{i=0}^{n-1} a'_i - \frac{1 + (-1)^j}{2(j+1)}$.
Step 3. Rational-weighted rational semidesign on \mathcal{H}_s^1

Lemma 6

Let $\mathcal{X}_s^d = (X, \mu_s^d)$ be a rational-weighted rational $(t + \tilde{s} - s)$-semidesign on \mathcal{H}_s^d, where $\tilde{s} - s$ is nonnegative even. Then, $\mathcal{X}_{s\rightarrow \tilde{s}}^d := (X, \mu_{s\rightarrow \tilde{s}}^d)$ is a rational-weighted rational t-semidesign on $\mathcal{H}_{\tilde{s}}^d$, where

$$\mu_{s\rightarrow \tilde{s}}^d(x_0, \ldots, x_d) := x_0^{\tilde{s} - s} \mu_s^d(x_0, \ldots, x_d).$$
Step 3. Rational-weighted rational semidesign on \mathcal{H}_s^1

Lemma 6

Let $\mathcal{X}_s^d = (X, \mu_s^d)$ be a rational-weighted rational $(t + \tilde{s} - s)$-semidesign on \mathcal{H}_s^d, where $\tilde{s} - s$ is nonnegative even. Then, $\mathcal{X}_{s \rightarrow \tilde{s}}^d := (X, \mu_{s \rightarrow \tilde{s}}^d)$ is a rational-weighted rational t-semidesign on $\mathcal{H}_{\tilde{s}}^d$, where

$$\mu_{s \rightarrow \tilde{s}}^d(x_0, \ldots, x_d) := x_0^{\tilde{s} - s} \mu_s^d(x_0, \ldots, x_d).$$

Corollary 7

Let \mathcal{X}_0^1 be a rational-weighted rational $(t + s)$-semidesign on \mathcal{H}_0^1 and \mathcal{X}_1^1 a rational-weighted rational $(t + s - 1)$-semidesign on \mathcal{H}_1^1. Then, $\mathcal{X}_{i \mod 2 \rightarrow i}^1$ is a rational-weighted rational t-semidesign on \mathcal{H}_s^1.
Step 4. Rational-weighted rational semidesign on \mathcal{H}_1^{d-1}

Lemma 8

Let \mathcal{X}_0 be a rational-weighted design on \mathcal{Z}_0 and \mathcal{X}_1 a rational-weighted design on \mathcal{Z}_1. Then, $\mathcal{X}_0 \times \mathcal{X}_1$ is a rational-weighted design on $\mathcal{Z}_0 \times \mathcal{Z}_1$.
Step 4. Rational-weighted rational semidesign on \mathcal{H}_1^{d-1}

Lemma 8

Let \mathcal{X}_0 be a rational-weighted design on \mathbb{Z}_0 and \mathcal{X}_1 a rational-weighted design on \mathbb{Z}_1. Then, $\mathcal{X}_0 \times \mathcal{X}_1$ is a rational-weighted design on $\mathbb{Z}_0 \times \mathbb{Z}_1$.

Corollary 9

For each $s \in [1, d-1] \mathbb{Z}$, let \mathcal{X}_s^1 be a rational-weighted rational t-semidesign. Then,

$$\mathcal{X}_1^{d-1} := \mathcal{X}_1^1 \times \cdots \times \mathcal{X}_1^{d-1}$$

is a rational-weighted rational t-semidesign on $\mathcal{H}_1^{d-1} \cong \mathcal{H}_1^1 \times \cdots \times \mathcal{H}_1^{d-1}$.
Lemma 10

Let $\mathcal{X} = (X, \mu_X)$ be a rational-weighted design on \mathbb{Z}. Then, $\overline{\mathcal{X}} := (X, n_X \mu_X)$ is an integer-weighted design on \mathbb{Z}, where

$$n_X := \text{lcm}_{x \in X} \text{ denominator of } \mu_X(x).$$
Step 5. Integer-weighted rational semidesign on \mathcal{H}_1^{d-1}

Lemma 10

Let $\mathcal{X} = (X, \mu_X)$ be a rational-weighted design on \mathbb{Z}. Then, $\overline{\mathcal{X}} := (X, n_X \mu_X)$ is an integer-weighted design on \mathbb{Z}, where

$$n_X := \text{lcm}_{x \in X} \text{ denominator of } \mu_X(x).$$

Corollary 11

Let \mathcal{X}_1^{d-1} be a rational-weighted rational t-semidesign on \mathcal{H}_1^{d-1}. Then, $\overline{\mathcal{X}}_1^{d-1}$ is an integer-weighted rational t-semidesign on \mathcal{H}_1^{d-1}.
Step 6. Designs on S^1

Proposition 12

Let X be the vertices of a regular $(t + 1)$-gon in S^1. Then, X is a t-design on S^1.
Lemma 13

Let \(\mathcal{X}_0 \) be a design on \(\mathbb{Z}_0 \) and \(\mathcal{X}_1 \) an integer-weighted design on \(\mathbb{Z}_1 \). Let \(g : (0, 1) \rightarrow \text{Aut}(\mathbb{Z}_0) \) be a map such that \(g(s) \mathcal{X}_0 \cap g(s') \mathcal{X}_0 = \emptyset \) for different \(s, s' \in (0, 1) \). Then,

\[
\mathcal{X}_0 \bowtie \mathcal{X}_1 := \{ (g(s_{x_1,i})x_0, x_1) : x_0 \in \mathcal{X}_0, x_1 \in \mathcal{X}_1, i \in [1, \mu_{\mathcal{X}_1}(x_1)]_\mathbb{Z} \}
\]

is a design on \(\mathbb{Z}_0 \times \mathbb{Z}_1 \), provided that \(s_{x_1,i} \)'s are distinct numbers in \((0, 1) \).
Step 7. Designs on S^d

Lemma 13

Let \mathcal{X}_0 be a design on \mathbb{Z}_0 and \mathcal{X}_1 an integer-weighted design on \mathbb{Z}_1. Let $g : (0, 1) \to \text{Aut}(\mathbb{Z}_0)$ be a map such that $g(s) \mathcal{X}_0 \cap g(s') \mathcal{X}_0 = \emptyset$ for different $s, s' \in (0, 1)$. Then,

$$\mathcal{X}_0 \bowtie \mathcal{X}_1 := \{(g(s_{x_1,i})x_0, x_1) : x_0 \in \mathcal{X}_0, x_1 \in \mathcal{X}_1, i \in [1, \mu_{\mathcal{X}_1}(x_1)]_{\mathbb{Z}}\}$$

is a design on $\mathbb{Z}_0 \times \mathbb{Z}_1$, provided that $s_{x_1,i}$'s are distinct numbers in $(0, 1)$.

Corollary 14

Let \mathcal{Y}_1 be a design on S^1 and \mathcal{X}_1^{d-1} an integer-weighted t-semidesign. Then,

$$\mathcal{Y}_1 \bowtie \mathcal{X}_1^{d-1}$$

is a design on S^d.

\textbf{Theorem 15}

Let \mathcal{Y}^1 be an explicit t-design on S^1, \mathcal{X}_0^1 an explicit rational-weighted rational $(t + d - 2)$-semidesign on \mathcal{H}_0^1 and \mathcal{X}_1^1 an explicit rational-weighted rational $(t + d - 1)$-semidesign on \mathcal{H}_1^1. Then,

$$\mathcal{Y}^1 \rtimes \prod_{i=1}^{d-1} \mathcal{X}_{i \mod 2 \rightarrow i}^1$$

is an explicit spherical t-design on S^d.

\textbf{Remark 16}

Designs above can be constructed over $\mathbb{Q}^{ab} \cap \mathbb{Q}$. Designs of arbitrary large size can be constructed.

Thank you for your attention.
Explicit spherical design

Theorem 15

Let \mathcal{Y}^1 be an explicit t-design on S^1, \mathcal{X}^1_0 an explicit rational-weighted rational $(t + d - 2)$-semidesign on \mathcal{H}^1_0 and \mathcal{X}^1_1 an explicit rational-weighted rational $(t + d - 1)$-semidesign on \mathcal{H}^1_1. Then,

$$\mathcal{Y}^1 \times \prod_{i=1}^{d-1} \mathcal{X}^1_{i \mod 2 \rightarrow i}$$

is an explicit spherical t-design on S^d.

Remark 16

- Designs above can be constructed over $\mathbb{Q}^{ab} \cap \mathbb{Q}$.
- Designs of arbitrary large size can be constructed.
Explicit spherical design

Theorem 15

Let \mathcal{Y}^1 be an explicit t-design on S^1, \mathcal{X}^1_0 an explicit rational-weighted rational $(t + d - 2)$-semidesign on \mathcal{H}^1_0 and \mathcal{X}^1_1 an explicit rational-weighted rational $(t + d - 1)$-semidesign on \mathcal{H}^1_1. Then,

$$\mathcal{Y}^1 \times \prod_{i=1}^{d-1} \mathcal{X}^1_{i \mod 2
ightarrow i}$$

is an explicit spherical t-design on S^d.

Remark 16

- Designs above can be constructed over $\mathbb{Q}^{ab} \cap \mathbb{Q}$.
- Designs of arbitrary large size can be constructed.

Thank you for your attention.